首页 | 本学科首页   官方微博 | 高级检索  
     


Grassland species will not necessarily benefit from future elevated air temperatures: a chlorophyll fluorescence approach to study autumn physiology
Authors:Birgit Gielen  Hans J. De Boeck  Catherine M. H. M. Lemmens  Roland Valcke  Ivan Nijs   Reinhart Ceulemans
Affiliation:Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Wilrijk, Belgium ;Laboratory of Molecular and Physical Plant Physiology Department SBG, Limburgs Universitair Centrum, Diepenbeek, Belgium
Abstract:Model ecosystems were grown in 12 sunlit, climate-controlled chambers to gain insight into the effects of elevated (+3°C) air temperature (Tair) on temperate grasslands. In this study, the hypothesis of delayed senescence in response to elevated Tair was tested for Rumex acetosa L. and Plantago lanceolata L. During the autumn of the first treatment year, frequent measurements were made of leaf chlorophyll a (Chl a ) fluorescence transients. Chl fluorescence images of individual leaves as well as digital colour images of these ecosystems were captured. Chl fluorescence variables, such as the maximum quantum yield of primary photochemistry (Fv/Fm), indicated a decreasing efficiency with time. Despite no treatment effect on Fv/Fm, other variables derived from the Chl fluorescence transients showed a strong trend towards a positive effect of a 3°C temperature increase on the photosynthetic performance of R. acetosa and P. lanceolata in the first year. After mid-September, the initial positive treatment effect disappeared for R. acetosa , strongly suggesting that leaf lifespan of this species was shortened by higher Tair. One possible explanation is more intense drought stress in the elevated compared to the ambient temperature treatments. Second-year measurements were possibly too limited in time to confirm this trend. These results show that temperate grassland species may take advantage of a future increase in Tair during autumn. This will ultimately depend on the species' degree of acclimation to a temperature change and on the resistance to drought stress.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号