首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cell growth optimization in microcarrier culture
Authors:B Mered  P Albrecht  Hope E Hopps
Institution:(1) Department of Health, Education, and Welfare, Public Healt Service, Food and Drug Administration, Bureau of Biologics, Division of Virology, 8800 Rockville Pike, 20205 Bethesda, Maryland
Abstract:Summary Three monkey kidney cell lines and primary chicken embryo cells were grown in microcarrier culture. The carrier support was DEAE-Sephadex gel beads at low anion exchange capacity prepared according to a protocol developed at the Massachusetts Institute of Technology. The growth rate of the cells and the final cell density in microcarrier culture was dependent on the concentration of the beads in culture and on the size of the initial cell inoculum. A bead concentration of 1.0 to 2.0 mg of beads/ml of tissue culture medium and a cell inoculum of 20,000 cells/cm2 of bead surface appeared to be optimal. The efficiency of the microcarrier culture system was compared to that of stationary and roller bottle cultures. Stationary flasks gave cell densities about twofold higher than maximal densities in roller bottles and about threefold and twofold higher than cell densities in microcarrier culture at a bead concentration of 2.5 and 1.0 mg/ml, respectively. In terms of cell yield per millitier of tissue culture medium, the microcarrier culture was superior to roller bottle and stationary cultures. An advantage of the microcarrier culture system is its suitability for a scale up into large volume production units.
Keywords:microcarrier culture  monkey kidney cells  primary chicken embryo cells
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号