Maximal Sum of Metabolic Exchange Fluxes Outperforms Biomass Yield as a Predictor of Growth Rate of Microorganisms |
| |
Authors: | Raphy Zarecki Matthew A. Oberhardt Keren Yizhak Allon Wagner Ella Shtifman Segal Shiri Freilich Christopher S. Henry Uri Gophna Eytan Ruppin |
| |
Affiliation: | 1. School of Computer Sciences, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.; 2. Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.; 3. Newe Ya''ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel.; 4. Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, Illinois, United States of America.; Virginia Commonwealth University, United States of America, |
| |
Abstract: | Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes (hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer growth. |
| |
Keywords: | |
|
|