首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A 340 kDa hyaluronic acid secreted by human vascular smooth muscle cells regulates their proliferation and migration
Authors:Papakonstantinou  E; Karakiulakis  G; Eickelberg  O; Perruchoud  AP; Block  LH; Roth  M
Institution:Department of Pharmacology, School of Medicine, Aristotle University, 54006 Thessaloniki, Greece, Department of Research, University Hospital of Basel, 4031 Basel, Switzerland and Department of Internal Medicine IV, University Hospital Vienna, Austria.
Abstract:The formation of atherosclerotic lesions is characterized by invasion of vascular smooth muscle cells (VSMC) into the tunica intima of the arterial wall and subsequently by increased proliferation of VSMC, a process apparently restricted to the intimal layer of blood vessels. Both events are preceded by the pathological overexpression of several growth factors, such as platelet-derived growth factor (PDGF) which is a potent mitogen for VSMC and can induce their chemotaxis. PDGF is generally not expressed in the normal artery but it is upregulated in atherosclerotic lesions. We have previously shown that PDGF-BB specifically stimulates proliferating VSMC to secrete a 340 kDa hyaluronic acid (HA-340). Here, we present evidence regarding the biological functions of this glycan. We observed that HA-340 inhibited the PDGF-induced proliferation of human VSMC in a dose-dependent manner and enhanced the PDGF-dependent invasion of VSMC through a basement membrane barrier. These effects were abolished following treatment of HA-340 with hyaluronidase. The effect of HA-340 on the PDGF-dependent invasion of VSMC coincided with increased secretion of the 72-kDa type IV collagenase by VSMC and was completely blocked by GM6001, a hydroxamic acid inhibitor of matrix metalloproteinases. HA-340 did not exert any chemotactic potency, nor did it affect chemotaxis of VSMC along a PDGF gradient. In human atheromatic aortas, we found that HA- 340 is expressed with a negative concentration gradient from the tunica media to the tunica intima and the atheromatic plaque. Our findings suggest that HA-340 may be linked to the pathogenesis of atherosclerosis, by modulating VSMC proliferation and invasion.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号