首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The soil as an environment for plant parasitic nematodes
Authors:F G W JONES
Institution:Rothamsted Experimental Station, Harpenden, Herts
Abstract:British arable soils are uniform in texture to plough depth but vary in structure and the content of new organic matter according to recent cultivations. Subsoils are less uniform and little influenced by cultivations. Although remarkably uniform in structure and outward appearance nematodes vary greatly in length and girth. Root ectoparasites live wholly in the soil but root endoparasites may spend only brief periods there. Nematodes that spend much time in the soil surface are subject to a harsher microclimate than those inhabiting deeper layers. The movement and activity of nematodes in soil is influenced by the thickness of water films, the amount of pore space with dimensions the nematodes can traverse, the stability and packing of aggregates, the oxygen consumption of competing organisms and the rate of supply. Other factors of which little is known are the degree of continuity of the usable spaces and their tortuosity. The moisture characteristic curve which relates water withdrawn to the suction pressure (matric potential) applied is a useful tool which enables the space available to a given nematode to be related to its cross-sectional diameter. Although total pore space and usable pore space are correlated in a general way with each other and with texture (e.g.% sand), and bulk density is correlated with pore space within textural classes, none of these measures can be substituted for an estimate of the usable pore space appropriate to the size of the nematode being studied. For most purposes the solid matrix of arable soils can be regarded as an inert skeleton supporting the pore space. The stability of the matrix is therefore an important parameter, determining changes of space and time. Little is known about the distribution of macro-voids in soils and rapid methods of assessing them are needed. These may be more important for and more easily used by long nematodes than short ones. For nematodes living near the soil surface diurnal temperature fluctuations may be large. Their movement and activity should be related to temperature fluctuations via the Q10-curve. For nematodes living deeper in the soil diurnal fluctuations are unimportant. So development can be mirrored by curves of accumulated temperature in day degrees above basal development temperature. Unlike the pattern of rainfall accumulation, which varies from place to place and year to year, and must greatly affect nematode multiplication, crop damage and activity, the pattern of temperature accumulation is remarkably stable. Differences from place to place and year to year are moderated by the changes in sowing date they impose. Consequently a nematode species and the host plant it infests usually develop together under similar soil climatic conditions from planting date onwards. In real soils the spaces in which nematodes live are partly filled by water in winter but are progressively drained as the season advances and become air filled. Then water films are too thin to permit movement except while the soil is draining after rainfall. Therefore the duration of activity is proportional to rainfall, and total activity throughout development is proportional to accumulated rainfall after discounting amounts too small to penetrate the soil. The activity of root ectoparasitic nematodes could be modelled by multiplying the duration of activity by temperature, using the Q10 curve if necessary (i.e. by the rate of activity). The soil environment imposes constraints on the animals that live in it. Populations are relatively static and inbred. The pore space also limits the properties of substances that link parasite with parasite (pheromones) and parasite with host (phytomones). The many additional complications that arise when plants are grown are depicted diagrammatically.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号