首页 | 本学科首页   官方微博 | 高级检索  
     


EDISA: extracting biclusters from multiple time-series of gene expression profiles
Authors:Jochen Supper  Martin Strauch  Dierk Wanke  Klaus Harter  Andreas Zell
Affiliation:1.Center for Bioinformatics Tübingen (ZBIT),University of Tübingen,Tübingen,Germany;2.Center for Plant Molecular Biology (ZMBP),University of Tübingen,Tübingen,Germany
Abstract:

Background  

Cells dynamically adapt their gene expression patterns in response to various stimuli. This response is orchestrated into a number of gene expression modules consisting of co-regulated genes. A growing pool of publicly available microarray datasets allows the identification of modules by monitoring expression changes over time. These time-series datasets can be searched for gene expression modules by one of the many clustering methods published to date. For an integrative analysis, several time-series datasets can be joined into a three-dimensional gene-condition-time dataset, to which standard clustering or biclustering methods are, however, not applicable. We thus devise a probabilistic clustering algorithm for gene-condition-time datasets.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号