首页 | 本学科首页   官方微博 | 高级检索  
     


Microtubule oscillations. Role of nucleation and microtubule number concentration
Authors:H Obermann  E M Mandelkow  G Lange  E Mandelkow
Affiliation:Max-Planck Unit for Structural Molecular Biology, Hamburg, Federal Republic of Germany.
Abstract:Microtubules are capable of performing synchronized oscillations of assembly and disassembly which has been explained by reaction mechanisms involving tubulin subunits, oligomers, microtubules, and GTP. Here we address the question of how microtubule nucleation or their number concentration affects the oscillations. Assembly itself requires a critical protein concentration (Cc), but oscillations require in addition a critical microtubule number concentration (CMT). In spontaneous assembly this can be achieved with protein concentrations Cos well above the critical concentration Cc because this enhances the efficiency of nucleation. Seeding with microtubules can either generate oscillations or suppress them, depending on how the seeds alter the effective microtubule number concentration. The relative influence of microtubule number and total protein concentrations can be varied by the rate at which assembly conditions are induced (e.g. by a temperature rise): Fast T-jumps induce oscillations because of efficient nucleation, slow ones do not. Oscillations become damped for several reasons. One is the consumption of GTP, the second is a decrease in microtubule number, and the third is that the ratio of microtubules in the two phases (growth-competent and shrinkage-competent) approach a steady state value. This ratio can be perturbed, and the oscillations restarted, by a cold shock, addition of seeds, addition of GTP, or fragmentation. Each of these is equivalent to a change in the effective microtubule number concentration.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号