首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Bifunctional effects of transforming growth factor-beta (TGF-beta) on endothelial cell growth correlate with phenotypes of TGF-beta binding sites.
Authors:Y Myoken  M Kan  G H Sato  W L McKeehan  J D Sato
Institution:W. Alton Jones Cell Science Center, Inc., Lake Placid, New York 12946.
Abstract:Transforming growth factor-beta (TGF-beta) is a bifunctional, dose-dependent regulator of endothelial cell proliferation induced in vitro by heparin-binding growth factor 1 (HBGF-1, acidic FGF). Here we have examined the relationship between endothelial cell growth and the expression of cell surface binding sites for TGF-beta and HBGF-1. Fetal bovine heart endothelial cell (FBHEC) growth was stimulated by low concentrations of TGF-beta and inhibited by high concentrations of TGF-beta while expressing two distinct classes of TGF-beta binding sites with binding constants of 24 pM (6300 sites/cell) and 900 pM (12,000 sites/cell). In contrast, human umbilical vein endothelial cells (HUVEC), whose growth was slightly promoted by TGF-beta, exhibited a single class of high-affinity TGF-beta binding sites (Kd = 45 pM, 4500 sites/cell). Affinity crosslinking using 125I]TGF-beta showed that FBHEC expressed two distinct low molecular weight TGF-beta binding sites (Mr 85,000 and 58,000), while HUVEC expressed a single type of low molecular weight TGF-beta binding site (Mr 85,000). As detected by binding of 125I]HBGF-1, preincubation of FBHEC with high concentrations of TGF-beta transmodulated the expression of high-affinity HBGF-1 receptors. In contrast, no transmodulation of HBGF-1 receptors occurred in FBHEC during preincubation with low concentrations of TGF-beta. Furthermore, preincubation of HUVEC with TGF-beta did not transmodulate the expression of HBGF-1 receptors. The data suggest that the ability of TGF-beta to stimulate or inhibit endothelial cell proliferation in a dose-dependent manner correlated with the expression of specific TGF-beta binding site subtypes and involved the transmodulation of HBGF-1 receptors.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号