首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Systems Modeling of Ca Homeostasis and Mobilization in Platelets Mediated by IP3 and Store-Operated Ca Entry
Authors:Andrew T Dolan  Scott L Diamond
Institution:Institute for Medicine and Engineering, Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
Abstract:Resting platelets maintain a stable level of low cytoplasmic calcium (Ca2+]cyt) and high dense tubular system calcium (Ca2+]dts). During thrombosis, activators cause a transient rise in inositol trisphosphate (IP3) to trigger calcium mobilization from stores and elevation of Ca2+]cyt. Another major source of Ca2+]cyt elevation is store-operated calcium entry (SOCE) through plasmalemmal calcium channels that open in response to store depletion as Ca2+]dts drops. A 34-species systems model employed kinetics describing IP3-receptor, DTS-plasmalemma puncta formation, SOCE via assembly of STIM1 and Orai1, and the plasmalemma and sarco/endoplasmic reticulum Ca2+-ATPases. Four constraints were imposed: calcium homeostasis before activation; stable in zero extracellular calcium; IP3-activatable; and functional SOCE. Using a Monte Carlo method to sample three unknown parameters and nine initial concentrations in a 12-dimensional space near measured or expected values, we found that model configurations that were responsive to stimuli and demonstrated significant SOCE required high inner membrane electric potential (>−70 mV) and low resting IP3 concentrations. The absence of puncta in resting cells was required to prevent spontaneous store depletion in calcium-free media. Ten-fold increases in IP3 caused saturated calcium mobilization. This systems model represents a critical step in being able to predict platelets’ phenotypes during hemostasis or thrombosis.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号