首页 | 本学科首页   官方微博 | 高级检索  
     


Flow infusion electrospray ionisation mass spectrometry for high throughput,non-targeted metabolite fingerprinting: a review
Authors:John Draper  Amanda J. Lloyd  Royston Goodacre  Manfred Beckmann
Affiliation:1.Institute of Biological Environmental and Rural Sciences,Aberystwyth University,Aberystwyth,UK;2.School of Chemistry and Manchester Interdisciplinary Biocentre,University of Manchester,Manchester,UK
Abstract:Producing a comprehensive overview of the chemical content of biologically-derived material is a major challenge. Apart from ensuring adequate metabolome coverage and issues of instrument dynamic range, mass resolution and sensitivity, there are major technical difficulties associated with data pre-processing and signal identification when attempting large scale, high-throughput experimentation. To address these factors direct infusion or flow infusion electrospray mass spectrometry has been finding utility as a high throughput metabolite fingerprinting tool. With little sample pre-treatment, no chromatography and instrument cycle times of less than 5 min it is feasible to analyse more than 1,000 samples per week. Data pre-processing is limited to aligning extracted mass spectra and mass-intensity matrices are generally ready in a working day for a month’s worth of data mining and hypothesis generation. ESI-MS fingerprinting has remained rather qualitative by nature and as such ion suppression does not generally compromise data information content as originally suggested when the methodology was first introduced. This review will describe how the quality of data has improved through use of nano-flow infusion and mass-windowing approaches, particularly when using high resolution instruments. The increasingly wider availability of robust high accurate mass instruments actually promotes ESI-MS from a merely fingerprinting tool to the ranks of metabolite profiling and combined with MS/MS capabilities of hybrid instruments improved structural information is available concurrently. We summarise current applications in a wide range of fields where ESI-MS fingerprinting has proved to be an excellent tool for “first pass” metabolome analysis of complex biological samples. The final part of the review describes a typical workflow with reference to recently published data to emphasise key aspects of overall experimental design.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号