首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fatty-acid-induced activation of NADPH oxidase in plasma membranes of human neutrophils depends on neutrophil cytosol and is potentiated by stable guanine nucleotides
Authors:R Seifert  G Schultz
Institution:Fakult?t für Biologie, Universit?t Konstanz, Federal Republic of Germany.
Abstract:Both cis and trans unsaturated fatty acids and sodium dodecyl sulfate activated NADPH oxidase in plasma membranes of human neutrophils in the presence of neutrophil cytosol. In contrast, 5,8,11,14-icosatetraynoic acid, saturated fatty acids, esters, peroxides and 4 beta-phorbol 12-myristate 13-acetate, a potent activator of protein kinase C, were inactive. 5,8,11,14-icosatetraynoic acid inhibited superoxide formation elicited by fatty acids. Guanosine 5'gamma-thio]triphosphate (GTPgamma S]), a potent activator of guanine-nucleotide-binding proteins (N-proteins) enhanced superoxide formation elicited by fatty acids up to fourfold, supporting our previous suggestion that NADPH oxidase is regulated by an N-protein Seifert, R. et al. (1986) FEBS Lett. 205, 161-165]. Cytosols from various tissues, soybean lipoxygenase and protein kinase C, purified from chicken stomach, did not substitute neutrophil cytosol. The activity of neutrophil cytosol was destroyed by heating at 95 degrees C. Superoxide formation was not affected by the inhibitor of protein kinase C 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7). Removal of cytosolic ATP by preincubation with hexokinase and glucose, dialysis of neutrophil cytosol or chelation of calcium with EGTA did not abolish the stimulatory effect of arachidonic acid and GTPgamma S]. Thus, the cytosolic cofactor appears to be a neutrophil-specific and heat-labile protein, which is neither a lipoxygenase nor protein kinase C.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号