首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Microsecond rotational motions of eosin-labeled myosin measured by time-resolved anisotropy of absorption and phosphorescence
Authors:T M Eads  D D Thomas  R H Austin
Institution:Department of Biochemistry University of Minnesota Medical School Minneapolis, MN 55455, U.S.A.;Department of Physics, Princeton University Princeton, NJ 08544, U.S.A.
Abstract:We have studied submicrosecond and microsecond rotational motions within the contractile protein myosin by observing the time-resolved anisotropy of both absorption and emission from the long-lived triplet state of eosin-5-iodoacetamide covalently bound to a specific site on the myosin head. These results, reporting anisotropy data up to 50 microseconds after excitation, extend by two orders of magnitude the time range of data on time-resolved site-specific probe motion in myosin. Optical and enzymatic analyses of the labeled myosin and its chymotryptic digests show that more than 95% of the probe is specifically attached to sulfhydryl-1 (SH1) on the myosin head. In a solution of labeled subfragment-1 (S-1) at 4 degrees C, absorption anisotropy at 0.1 microseconds after a laser pulse is about 0.27. This anisotropy decays exponentially with a rotational correlation time of 210 ns, in good agreement with the theoretical prediction for end-over-end tumbling of S-1, and with times determined previously by fluorescence and electron paramagnetic resonance. In aqueous glycerol solutions, this correlation time is proportional to viscosity/temperature in the microsecond time range. Furthermore, binding to actin greatly restricts probe motion. Thus the bound eosin is a reliable probe of myosin-head rotational motion in the submicrosecond and microsecond time ranges. Our submicrosecond data for myosin monomers (correlation time 400 ns) also agree with previous results using other techniques, but we also detect a previously unresolvable slower decay component (correlation time 2.6 microseconds), indicating that the faster motions are restricted in amplitude. This restriction is not consistent with the commonly accepted free-swivel model of S-1 attachment in myosin. In synthetic thick filaments of myosin, both fast (700 ns) and slow (5 microseconds) components of anisotropy decay are observed. In contrast to the data for monomers, the anisotropy of filaments has a substantial residual component (26% of the initial anisotropy) that does not decay to zero even at times as long as 50 microseconds, implying significant restriction in overall rotational amplitude. This result is consistent with motion restricted to a cone half-angle of about 50 degrees. The combined results are consistent with a model in which myosin has two principal sites of segmental flexibility, one giving rise to submicrosecond motions (possibly corresponding to the junction between S-1 and S-2) and the other giving rise to microsecond motions (possibly corresponding to the junction between S-2 and light meromyosin).(ABSTRACT TRUNCATED AT 400 WORDS)
Keywords:S-1  proteolytic subfragment-1 (head of myosin)  S-2  proteolytic subfragment-2 of myosin  reactive cvsteine in S-1  e  p  r    electron paramagnetic resonance  s  t  -e  p  r    saturation-transfer e  p  r    E51A  eosin-5-iodoacetamide  EITC  eosin isothiocyanate  EGTA  MOPS  morpholinopropane sulfonic acid  EDTA  ethylenediaminetetraacetic acid  DTT  dithiothreitol  SDS  sodium dodecyl sulfate  PMSF  phenylmethylsulfonyl fluoride
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号