首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The antibacterial activity of human neutrophils and eosinophils requires proton channels but not BK channels
Authors:Femling Jon K  Cherny Vladimir V  Morgan Deri  Rada Balázs  Davis A Paige  Czirják Gabor  Enyedi Peter  England Sarah K  Moreland Jessica G  Ligeti Erzsébet  Nauseef William M  DeCoursey Thomas E
Institution:Inflammation Program, Roy J. and Luille A. Carver College of Medicine, University of Iowa, Coralville, 52241, USA.
Abstract:Electrophysiological events are of central importance during the phagocyte respiratory burst, because NADPH oxidase is electrogenic and voltage sensitive. We investigated the recent suggestion that large-conductance, calcium-activated K(+) (BK) channels, rather than proton channels, play an essential role in innate immunity (Ahluwalia, J., A. Tinker, L.H. Clapp, M.R. Duchen, A.Y. Abramov, S. Page, M. Nobles, and A.W. Segal. 2004. Nature. 427:853-858). In PMA-stimulated human neutrophils or eosinophils, we did not detect BK currents, and neither of the BK channel inhibitors iberiotoxin or paxilline nor DPI inhibited any component of outward current. BK inhibitors did not inhibit the killing of bacteria, nor did they affect NADPH oxidase-dependent degradation of bacterial phospholipids by extracellular gIIA-PLA(2) or the production of superoxide anion (O(2*)(-)). Moreover, an antibody against the BK channel did not detect immunoreactive protein in human neutrophils. A required role for voltage-gated proton channels is demonstrated by Zn(2+) inhibition of NADPH oxidase activity assessed by H(2)O(2) production, thus validating previous studies showing that Zn(2+) inhibited O(2*)(-) production when assessed by cytochrome c reduction. In conclusion, BK channels were not detected in human neutrophils or eosinophils, and BK inhibitors did not impair antimicrobial activity. In contrast, we present additional evidence that voltage-gated proton channels serve the essential role of charge compensation during the respiratory burst.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号