首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Biochemical processing of E-cadherin under cellular stress
Authors:Keller Steven H  Nigam Sanjay K
Institution:Department of Medicine, University of California, San Diego, CA 92103-8382, USA. shkeller@ucsd.edu
Abstract:The proteolytic cleavage pathways of E-cadherin endogenously expressed in MDCK (Madin-Darby canine kidney) cells were characterized in cells treated with antimycin A and deoxyglucose to examine transmembrane protein processing under cellular stress. E-cadherin is a type I transmembrane protein which operates as the cell adhesion molecule component of the adherens junction, a complex of proteins involved in epithelial tissue development and integrity. We now demonstrate that treatment of MDCK cells with antimycin A and deoxyglucose activates caspase mediated pathways that cleave E-cadherin. E-cadherin is cleaved into two major fragments, with the sizes predicted by the location of a caspase-3 cleavage consensus sequence. Cleavage of E-cadherin and deposition of the C-terminal fragment into the cytoplasm are inhibited by the caspase inhibitor DEVD-CHO. Thus, a major mechanism for E-cadherin cleavage and dissolution of the adherens junction under antimycin/deoxyglucose treatment is caspase mediated, initiated by activation of an apoptosis pathway.
Keywords:Caspase  MDCK cells  Antimycin  Deoxyglucose  Cellular stress  Ischemia  Adherens junction  E-cadherin  Protein degradation  Apoptosis
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号