首页 | 本学科首页   官方微博 | 高级检索  
   检索      

土壤水分胁迫和大气CO2浓度对光合分馏及后光合分馏的影响
引用本文:丁兵兵,张永娥,余新晓,贾国栋,王渝淞,郑鹏飞,蒋涛,夏娟娟.土壤水分胁迫和大气CO2浓度对光合分馏及后光合分馏的影响[J].应用生态学报,2020,31(6):1800-1806.
作者姓名:丁兵兵  张永娥  余新晓  贾国栋  王渝淞  郑鹏飞  蒋涛  夏娟娟
作者单位:1.北京林业大学水土保持与荒漠化防治教育部重点实验室, 北京 100083;2.中国水利水电科学研究院泥沙研究所, 北京 100038
基金项目:国家自然科学基金重点项目(41877152)资助
摘    要:对植物光合和后光合分馏进行分析,有助于提升对植物生理和水分管理等的认识。本研究通过测定大气、侧柏叶片和枝条韧皮部可溶性化合物的δ13C,探讨了光合作用时大气和叶片间碳同位素的分馏(ΔCa-leaf)和光合作用后叶片到枝条间的碳同位素分馏(ΔCleaf-phlo)对土壤含水量(SWC)和大气CO2浓度(Ca)的响应。结果表明: ΔCa-leaf在SWC为田间持水量(FC)的95%~100%(95%~100%FC)且Ca为400 μmol·mol-1时达到最大值(13.06‰),在SWC为35%~45%FC且Ca为800 μmol·mol-1时达到最小值(8.63‰);气孔导度和叶肉细胞导度均与ΔCa-leaf呈显著线性正相关,相关系数分别为0.43和0.44;而ΔCleaf-phlo并未受到SWC和Ca的显著影响。本研究不仅可以提高对碳同位素的分馏机制的认识,而且可以为植物对未来气候变化的生存适应性提供理论依据。

收稿时间:2019-12-25

Effects of soil water stress and atmospheric CO2 concentration on photosynthetic and post-photosynthetic fractionation
DING Bing-bing,ZHANG Yong-e,YU Xin-xiao,JIA Guo-dong,WANG Yu-song,ZHENG Peng-fei,JIANG Tao,XIA Juan-juan.Effects of soil water stress and atmospheric CO2 concentration on photosynthetic and post-photosynthetic fractionation[J].Chinese Journal of Applied Ecology,2020,31(6):1800-1806.
Authors:DING Bing-bing  ZHANG Yong-e  YU Xin-xiao  JIA Guo-dong  WANG Yu-song  ZHENG Peng-fei  JIANG Tao  XIA Juan-juan
Institution:1.Ministry of Education Key Laboratory of Soil and Water Conservation and Desertification Combating, Beijing Forestry University, Beijing 100083, China;2.Institute of Sediment Research, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
Abstract:Analysis of plant photosynthesis and post-photosynthetic fractionation can improve our understanding of plant physiology and water management. By measuring δ13C in the atmosphere, and δ13C of soluble compounds in leaves and branch phloem of Platycladus orientalis, we examined discrimination pattern, including atmosphere-leaf discrimination during photosynthesis (ΔCa-leaf) and leaf-twig discrimination during post-photosynthesis (ΔCleaf-phlo), in response to changes of soil water content (SWC) and atmospheric CO2 concentration (Ca). The results showed that ΔCa-leaf reached a maximum of 13.06‰ at 95%-100% field water-holding capacity (FC) and Ca 400 μmol·mol-1, and a minimum of 8.63‰ at 35%-45% FC and Ca 800 μmol·mol-1. Both stomatal conductance and mesophyll cell conductance showed a significant linear positive correlation with ΔCa-leaf, with a correlation coefficient of 0.43 and 0.44, respectively. ΔCleaf-phlo was not affected by SWC and Ca. Our results provide mechanism of carbon isotopes fractionation and a theoretical basis for plant survival strategies in response to future climate change.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《应用生态学报》浏览原始摘要信息
点击此处可从《应用生态学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号