首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sodium modulates opioid receptors through a membrane component different from G-proteins. Demonstration by target size analysis
Authors:S Ott  T Costa  A Herz
Institution:Department of Neuropharmacology, Max-Planck-Institut für Psychiatrie, Planegg-Martinsreid, Federal Republic of Germany.
Abstract:The target size for opioid receptor binding was studied after manipulations known to affect the interactions between receptor and GTP-binding regulatory proteins (G-proteins). Addition of GTP or its analogs to the binding reaction, exposure of intact cells to pertussis toxin prior to irradiation, or treatment of irradiated membranes with N-ethylmaleimide did not change the target size (approximately equal to 100 kDa) for opioid receptors in NG 108-15 cells and rat brain. These data suggest that the 100-kDa species does not include an active subunit of a G-protein or alternatively that GTP does not promote the dissociation of the receptor-G-protein complex. The presence of Na+ (100 mM) in the radioligand binding assay induced a biphasic decay curve for agonist binding and a flattening of the monoexponential decay curve for a partial agonist. In both cases the effect was explained by an irradiation-induced loss of the low affinity state of the opioid receptor produced by the addition of Na+. This suggests that an allosteric inhibitor that mediates the effect of sodium on the receptor is destroyed at low doses of irradiation, leaving receptors which are no longer regulated by sodium. The effect of Na+ on target size was slightly increased by the simultaneous addition of GTP but was not altered by pertussis toxin treatment. Thus, the sodium unit is distinct from G-proteins and may represent a new component of the opioid receptor complex. Assuming a simple bimolecular model of one Na+ unit/receptor, the size of this inhibitor can be measured as 168 kDa.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号