首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Late Quaternary history of atmospheric and oceanic circulation in the eastern equatorial Pacific
Authors:Karen Romine
Institution:Graduate School of Oceanography, University of Rhode Island, Kingston, RI 02881 U.S.A.
Abstract:Four radiolarian assemblages have been defined in recent seafloor sediments of the equatorial Pacific Ocean. The distribution of these assemblages corresponds to the modern pattern of oceanic circulation and water mass structure in this region: the eastern Pacific shallow permanent thermocline and the Equatorial Undercurrent; Peru Current upwelling and the oxygen minimum; the subtropical water mass; warm western tropical water and the North Equatorial Countercurrent. In twelve cores chosen to transect the region both longitudinally and latitudinally, the distribution of these four assemblages has been reconstructed for six time-intervals during the last 127,000 years: 18,000 B.P. (glacial Stage 2); 36,000 B.P. and 52,000 B.P. (interstadial Stage 3); 65,000 B.P. (glacial Stage 4); 82,000 B.P. and 120,000 B.P. (interglacial Stage 5). Atmospheric and oceanic circulation changes through time have been inferred from the reconstructed microfossil assemblage distributions. Changes in assemblage distributions indicate that variations in intensity, direction and mean position of the tradewinds caused marked changes in the oceanic circulation patterns through the last glacial cycle.Near the end of interglacial Stage 5, the disappearance of the North Equatorial Countercurrent from the eastern Pacific suggests that the mean position of the tradewinds was shifted to the south approximately 5° of latitude relative to the modern position, so that the Northeast trades prevented the flow of the North Equatorial Countercurrent into the eastern Pacific. Near the end of interstadial Stage 3, a change in wind direction occurred from predominantly zonal winds, which enhance equatorial divergence and surfacing of the Equatorial Undercurrent, to more meridional winds, which enhance coastal upwelling associated with the Peru Current.In the tropical Pacific Ocean, late Quaternary changes in atmospheric and oceanic circulation are linked with times of continental ice sheet growth in the Northern Hemisphere (i.e., the interglacial-to-glacial transitions across oxygen isotope stage boundaries 54 and 32). The major changes in circulation seem to occur a few thousand years in advance of the glacial episodes, at or near periods of ice sheet growth. This relationship indicates that changes in atmospheric circulation in the tropics led and influenced the development of conditions suitable for polar and continental ice sheet growth in the Northern Hemisphere.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号