首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Physical incorporation of a single-stranded oligodeoxynucleotide during targeted repair of a human chromosomal locus
Authors:Radecke Sarah  Radecke Frank  Peter Ingrid  Schwarz Klaus
Institution:Institut für Klinische Transfusionsmedizin und Immungenetik Ulm. Abteilung Transfusionsmedizin, Universit?tsklinikum Ulm, D-89081 Ulm, Germany.
Abstract:BACKGROUND: Targeted gene repair is an attractive method to correct point-mutated genes at their natural chromosomal sites, but it is still rather inefficient. As revealed by earlier studies, successful gene correction requires a productive interaction of the repair molecule with the target locus. The work here set out to investigate whether DNA repair, e.g., mismatch repair, or a direct incorporation of the correction molecule follows as the step upon the initial interaction. METHODS: Single-stranded 21mer oligodeoxynucleotides (ODNs) of sense orientation were directed towards point-mutated enhanced green fluorescence protein transgene loci in HEK-293-derived cell clones. First gene repair assays compared ODNs carrying the canonical termini 5'-phosphate and 3'-OH with their respective variants harbouring non-canonical termini (5'-OH, 3'-H). Second, a protocol was established to allow efficient recovery of integrated short biotin-labelled ODNs from the genomes of gene-corrected cells using streptavidin-coated beads in order to test directly whether transfected ODNs become bona fide parts of the target locus DNA. RESULTS: Oligodeoxynucleotides with canonical termini were about 34-fold more efficient than their counterparts carrying non-canonical termini in a phosphorothioate-modified backbone. Furthermore, biotinylated fragments were successfully recovered from genomic DNAs of gene-corrected cells. CONCLUSIONS: The experiment showed that ODNs are incorporated into a mammalian genome. This unravels one early repair step and also sets an unexpected example of genome dynamics possibly relevant to other ODN-based cell techniques.
Keywords:dideoxy terminus  Okazaki fragment  oligonucleotide incorporation  oligonucleotide‐mediated gene correction
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号