首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Breaking symmetry: mutations engineered into R67 dihydrofolate reductase,a D2 symmetric homotetramer possessing a single active site pore
Authors:Smiley R Derike  Stinnett Lori G  Saxton Arnold M  Howell Elizabeth E
Institution:Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA.
Abstract:R67 dihydrofolate reductase (DHFR) is an enzyme, encoded by an R-plasmid, that confers resistance to the antibacterial agent trimethoprim. This homotetramer possesses a single active site pore and exact 222 symmetry. The symmetry imposes constraints on the ability of the enzyme to optimize binding of the substrate, dihydrofolate (DHF), and the cofactor, NADPH, resulting in a "one site fits both ligands" approach. This approach allows formation of either a NADPH.NADPH, dihydrofolate.dihydrofolate, or NADPH.dihydrofolate complex. The first two complexes are nonproductive, while the third is the productive catalytic species. To break the symmetry of the active site, a tandem array of four R67 DHFR genes has been linked in frame, allowing individual manipulation of each gene copy. Various numbers and combinations of asymmetric Q67H mutations have been engineered into the tandem gene array. The Q67H mutation was chosen for investigation as it was previously found to tighten binding to both dihydrofolate and NADPH by approximately 100-fold in homotetrameric R67 DHFR Park, H., Bradrick, T. D., and Howell, E. E. (1997) Protein Eng. 10, 1415-1424]. Nonadditive effects on ligand binding are observed when one to four mutations are inserted, indicating either conformational changes in the protein or different cooperativity patterns in the ligand-ligand interactions. From steady state kinetics, addition of Q67H mutations does not drastically affect formation of the NADPH.dihydrofolate complex; however, a large energy difference between the productive and nonproductive complexes is no longer maintained. A role for Q67 in discriminating between these various states is proposed. Since theories of protein evolution suggest gene duplication followed by accumulation of mutations can lead to divergence of activity, this study is a first step toward asking if introduction of asymmetric mutations in the quadrupled R67 DHFR gene can lead to optimization of ligand binding sites.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号