Abstract: | ABSTRACT: BACKGROUND: The desulphurization of dibenzothiophene (DBT), a recalcitrant thiophenic fossil fuel component by Serratia marcescens (UCP 1549) in order for reducing the sulphur content was investigated. The study was carried out establishing the growth profile using Luria Bertani medium to different concentrations of DBT during 120hours at 28oC, and orbital shaker at 150rpm. RESULTS: The results indicated that concentrations of DBT 0.5, 1.0 and 2.0 mM do not affected the growth of the bacterium. The DBT showed similar Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MCB) (3.68 mM). The desulphurization of DBT by S. marcescens was used with 96 hours of growth on 2mM of DBT, and was determined by gas chromatography (GC) and GC-mass spectrometry. In order to study the desulphurization process by S. marcescens was observed the presence of a sulfur-free product at 16 hours of cultivation The results show that S. marcescens oxidizes DBT to its corresponding DBT-5 oxide and then to DBT-sulfone, without the formation of any biphenyl. CONCLUSIONS: The data suggests the use of metabolic pathway "4S" by S. marcescens (UCP 1549) and formed biphenyl. The microbial desulphurization process by S. Serratia can be suggest significant reducing sulphur content in DBT, and showed promising potential for reduction of the sulfur content in diesel oil. |