首页 | 本学科首页   官方微博 | 高级检索  
     


Dominant formation of a single-length channel by amphotericin B in dimyristoylphosphatidylcholine membrane evidenced by 13C-31P rotational echo double resonance
Authors:Matsuoka Shigeru  Ikeuchi Hiroki  Matsumori Nobuaki  Murata Michio
Affiliation:Department of Chemistry, Graduate School of Science, Osaka University, 1-16 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
Abstract:(13)C-Labeled amphotericin B (AmB) was prepared by feeding the producing organism Streptomyces nodosus with [3-(13)C]propionate. The REDOR experiments for dimyristoylphosphatidylcholine (DMPC) membrane using the (13)C-labeled AmB showed the prominent dephasing effects between the phosphate group in PC and C41 carboxyl carbon in the polar head. In addition, C39/C40 methyl carbons also gave rise to the significant reduction of their (13)C NMR signals, implying that both terminal parts of AmB reside close to the surface of the DMPC membrane. Conversely, the same REDOR experiments with use of distearoylphosphatidylcholine (DSPC) showed no dephasing for the C39/C40 methyl signals while a marked reduction of the C41 carbonyl signal was again observed. These findings should be most reasonably accounted for by the notion that AmB can span across the DMPC membrane with a single-length interaction but cannot span the DSPC membrane due to its greater thickness. To our knowledge, the results provide the first direct spectroscopic evidence for the formation of a single-length channel across a biomembrane, which was previously suggested by channel current recording experiments.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号