首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of Three New Azotobacter vinelandii Alginate Lyases,One of Which Is Involved in Cyst Germination
Authors:Martin Gimmestad  Helga Ertesv?g  Tonje Marita Bjerkan Heggeset  Olav Aarstad  Britt Iren Gl?rum Svanem  Svein Valla
Institution:Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
Abstract:Alginates are polysaccharides composed of 1-4-linked β-d-mannuronic acid and α-l-guluronic acid. The polymer can be degraded by alginate lyases, which cleave the polysaccharide using a β-elimination reaction. Two such lyases have previously been identified in the soil bacterium Azotobacter vinelandii, as follows: the periplasmic AlgL and the secreted bifunctional mannuronan C-5 epimerase and alginate lyase AlgE7. In this work, we describe the properties of three new lyases from this bacterium, AlyA1, AlyA2, and AlyA3, all of which belong to the PL7 family of polysaccharide lyases. One of the enzymes, AlyA3, also contains a C-terminal module similar to those of proteins secreted by a type I secretion system, and its activity is stimulated by Ca2+. All three enzymes preferably cleave the bond between guluronic acid and mannuronic acid, resulting in a guluronic acid residue at the new reducing end, but AlyA3 also degrades the other three possible bonds in alginate. Strains containing interrupted versions of alyA1, alyA3, and algE7 were constructed, and their phenotypes were analyzed. Genetically pure alyA2 mutants were not obtained, suggesting that this gene product may be important for the bacterium during vegetative growth. After centrifugation, cultures from the algE7 mutants form a large pellet containing alginate, indicating that AlgE7 is involved in the release of alginate from the cells. Upon encountering adverse growth conditions, A. vinelandii will form a resting stage called cyst. Alginate is a necessary part of the protective cyst coat, and we show here that strains lacking alyA3 germinate poorly compared to wild-type cells.Azotobacter vinelandii is a nitrogen-fixing bacterium found in soil. A. vinelandii and several species belonging to the related genus Pseudomonas have been found to produce the polymer alginate. This linear, extracellular polysaccharide is composed of 1-4-linked β-d-mannuronic acid (M) and its C-5 epimer α-l-guluronic acid (G) (35), and the relative amount and distribution of these two residues vary according to the species and growth conditions. Some of the M residues in bacterial alginates may be O acetylated at C-2, C-3, or both C-2 and C-3 (34).Alginate is first synthesized as mannuronan, and the G residues are introduced by mannuronan C-5 epimerases. All genome-sequenced alginate-producing bacteria have been found to encode a periplasmic epimerase, AlgG, that epimerizes some of the M residues in the polymer into G residues (40). AlgG seems to be unable to epimerize an M residue next to a preexisting G residue in vivo. A. vinelandii also encodes a family of secreted mannuronan C-5 epimerases (AlgE1-7) (40), some of which are able to form stretches of consecutive G residues (G blocks). Alginates containing G blocks can be cross-linked by divalent cations and thereby form gels (35).Polysaccharide lyases (EC 4.2.2.-) are a group of enzymes which cleave the polymer chains via a β-elimination mechanism, resulting in the formation of a double bond at the newly formed nonreducing end. For alginate lyases, 4-deoxy-l-erythro-hex-4-enepyranosyluronate (denoted as Δ) is formed at the nonreducing end. Several such lyases have been purified from both alginate-producing and alginate-degrading organisms, as reviewed by Wong et al. (42). When they are classified according to primary structure, the alginate lyases belong to the polysaccharide-degrading enzyme families PL5, PL6, PL7, PL14, PL17, and PL18 (http://www.cazy.org). Alginate molecules may contain four different bonds (M-M, M-G, G-M, and G-G), and alginate lyases may therefore be classified according to their preferred substrate specificities. It is now possible to obtain pure mannuronan and nearly pure (MG)n and G blocks (17, 19, 20), and this allows for an improved assessment of the substrate specificities of the alginate lyases.The following two alginate lyases have been characterized in A. vinelandii: the periplasmic AlgL that belongs to the PL5 family (15) and the extracellular bifunctional mannuronan C-5 epimerase and alginate lyase AlgE7 (36, 37). AlgL is encoded by the alginate biosynthesis operon, similar to what has been found in all characterized alginate-producing bacteria. This enzyme cleaves M-M and M-G bonds (15), while AlgE7 preferably degrades G-MM and G-GM bonds (37). The latter enzyme is also able to introduce G residues in the alginate, thus creating the preferred substrate for the lyase.When A. vinelandii experiences a lack of nutrients, it will develop into a dormant cell designated cyst (30). The cell is then protected against desiccation by a multilayered coat, of which gel-forming alginate is a necessary part. Resuspension of cysts in a medium containing glucose leads to a germination process in which vegetative cells eventually escape from the cyst coat. It has been proposed that an alginate lyase may be involved in the rupture of the coat (43). AlgL is dispensable for germination (38), while the biological function of AlgE7 is unknown. In this report, we use the available draft genome sequence of A. vinelandii to identify three additional putative lyases and evaluate their and AlgE7''s role in growth, encystment, and germination of the bacterium.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号