首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The M10 Locus of Murine Gammaherpesvirus 68 Contributes to both the Lytic and the Latent Phases of Infection
Authors:B Flach  B Steer  N N Thakur  J Haas  H Adler
Institution:Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, Helmholtz Zentrum München—German Research Center for Environmental Health,1. Medical Clinic III, LMU Munich, Munich, Germany,2. Max von Pettenkofer Institute, LMU Munich, Munich, Germany,3. Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom4.
Abstract:Murine gammaherpesvirus 68 (MHV-68) is closely related to Epstein-Barr virus and Kaposi''s sarcoma-associated herpesvirus (KSHV) and provides a small-animal model to study the pathogenesis of gammaherpesvirus (γHV) infections. According to the colinear organization of the γHV genomes, the M10 locus is situated at a position equivalent to the K12 locus of KSHV, which codes for proteins of the kaposin family. The M10 locus of MHV-68 has been predicted to code for three overlapping open reading frames (M10a, M10b, and M10c M10a-c]) with unknown function. In addition, the M10 locus contains a lytic origin of replication (oriLyt). To elucidate the function of the M10 locus during lytic and latent infections, we investigated, both in vitro and in vivo, the following four recombinant viruses which were generated using MHV-68 cloned as a bacterial artificial chromosome: (i) a mutant virus with a deletion which affects both the coding region for M10a-c and the oriLyt; (ii) a revertant virus in which both the M10a-c coding region and the oriLyt were reverted to those of the wild type; (iii) a virus with an ectopic insertion of the oriLyt, which restores the function of the oriLyt but not the M10a-c coding region; and (iv) a mutant virus with a deletion in the oriLyt only. While the mutants were slightly attenuated with regard to lytic replication in cell culture, they showed severe growth defects in vivo. Both lytic replication and latency amplification were strongly reduced. In contrast, both the revertant virus and the virus with the ectopic oriLyt insertion grew very similarly to the parental wild-type virus both in vitro and in vivo. Thus, we provide genetic evidence that mutation of the oriLyt, and not of putative protein coding sequences within the M10a-c region, is responsible for the observed phenotype. We conclude that the oriLyt in the M10 locus plays an important role during infection of mice with MHV-68.Diseases caused by gammaherpesviruses continue to be a challenge for human health. The prototypic gamma-1 herpesvirus Epstein-Barr virus (EBV) is associated with lymphomas and nasopharyngeal carcinoma (22). Human herpesvirus 8 (also called Kaposi''s sarcoma-associated herpesvirus KSHV]), a gamma-2 herpesvirus, is associated with lymphoproliferative disorders and Kaposi''s sarcoma (24). In vivo studies of gammaherpesvirus pathogenesis have been limited to clinical investigation of the infection because of the restricted host range of these viruses. The murine gammaherpesvirus 68 (MHV-68) is also a member of the gammaherpesvirus subfamily and is closely related to KSHV and EBV. Since there exist no good animal models for KSHV and EBV, MHV-68 serves as a small-animal model to investigate gammaherpesvirus pathogenesis (6, 9, 10, 13, 21, 25, 26, 30). MHV-68 is a natural pathogen of wild rodents (7) and is capable of infecting laboratory mice. The nucleotide sequence of MHV-68 is similar to that of EBV and even more closely related to that of KSHV (29). MHV-68 contains genes which are homologous to cellular genes or to genes of other gammaherpesviruses. In addition, it contains virus-specific genes. Many of the latency- and transformation-associated proteins of the gammaherpesviruses, for example, EBNA and LMP of EBV, appear to be encoded by virus-specific genes, yet it has been suggested that pathogenesis-associated genes of gammaherpesviruses may be contained in similarly positioned genome regions (29). The virus-specific genes of MHV-68 were originally designated M1 to M14 (29). The M10 locus has been predicted to code for three overlapping open reading frames (M10a, M10b, and M10c M10a-c]) (29). While several MHV-68-specific genes have been shown to code for proteins with important functions, the function of M10 is still unknown. A more recent report even considered M10a-c rather unlikely to code for proteins (21). Importantly, the M10 locus also contains a lytic origin of replication (oriLyt) (3, 8). According to the colinear organization of the gammaherpesvirus genomes, the M10 locus is situated at a position equivalent to that of the K12 locus of KSHV. K12 encodes proteins of the kaposin family. Kaposin proteins are involved in cellular transformation and in stabilization of cytokine mRNAs (16-18,20). Of note, the K12 locus also contains an oriLyt (5).Here, we investigated the function of the M10 locus during lytic and latent infections by studying mutant viruses with deletions in the M10 loci, either affecting both the coding region for M10a-c and the oriLyt or the oriLyt only. While the mutants were slightly attenuated with regard to lytic replication in cell culture, they showed severe growth defects in vivo. Both lytic replication and latency amplification were strongly reduced in mice infected with the mutant viruses. In contrast, a revertant virus in which both the M10a-c coding region and the oriLyt were reverted to those of the wild type and a virus with an ectopic insertion of the oriLyt which restores the function of the oriLyt but not the M10a-c coding region grew very similarly to the parental wild-type virus both in vitro and in vivo. Thus, we provide genetic evidence that mutation of the oriLyt, and not of putative protein coding sequences within the M10a-c region, is responsible for the observed phenotype.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号