首页 | 本学科首页   官方微博 | 高级检索  
     


Role of Maltogenic Amylase and Pullulanase in Maltodextrin and Glycogen Metabolism of Bacillus subtilis 168
Authors:Jae-Hoon Shim  Jong-Tae Park  Jung-Sun Hong  Ki Woo Kim  Myo-Jeong Kim  Jung-Hyuk Auh  Young-Wan Kim  Cheon-Seok Park  Winfried Boos  Jung-Wan Kim  Kwan-Hwa Park
Abstract:The physiological functions of two amylolytic enzymes, a maltogenic amylase (MAase) encoded by yvdF and a debranching enzyme (pullulanase) encoded by amyX, in the carbohydrate metabolism of Bacillus subtilis 168 were investigated using yvdF, amyX, and yvdF amyX mutant strains. An immunolocalization study revealed that YvdF was distributed on both sides of the cytoplasmic membrane and in the periplasm during vegetative growth but in the cytoplasm of prespores. Small carbohydrates such as maltoheptaose and β-cyclodextrin (β-CD) taken up by wild-type B. subtilis cells via two distinct transporters, the Mdx and Cyc ABC transporters, respectively, were hydrolyzed immediately to form smaller or linear maltodextrins. On the other hand, the yvdF mutant exhibited limited degradation of the substrates, indicating that, in the wild type, maltodextrins and β-CD were hydrolyzed by MAase while being taken up by the bacterium. With glycogen and branched β-CDs as substrates, pullulanase showed high-level specificity for the hydrolysis of the outer side chains of glycogen with three to five glucosyl residues. To investigate the roles of MAase and pullulanase in glycogen utilization, the following glycogen-overproducing strains were constructed: a glg mutant with a wild-type background, yvdF glg and amyX glg mutants, and a glg mutant with a double mutant (DM) background. The amyX glg and glg DM strains accumulated significantly larger amounts of glycogen than the glg mutant, while the yvdF glg strain accumulated an intermediate amount. Glycogen samples from the amyX glg and glg DM strains exhibited average molecular masses two and three times larger, respectively, than that of glycogen from the glg mutant. The results suggested that glycogen breakdown may be a sequential process that involves pullulanase and MAase, whereby pullulanase hydrolyzes the α-1,6-glycosidic linkage at the branch point to release a linear maltooligosaccharide that is then hydrolyzed into maltose and maltotriose by MAase.Bacillus subtilis can utilize polysaccharides such as starch, glycogen, and amylose as carbon sources by hydrolyzing them into smaller maltodextrins via the action of extracellular α-amylase (AmyE) (14). In B. subtilis, α-glucosidase encoded by malL has been known to contribute to maltodextrin metabolism in the cell (40, 41). Schönert et al. (42) reported that maltose is transported by the phosphoenolpyruvate-dependent phosphotransferase system (PTS) in B. subtilis. They also reported that maltodextrins with degrees of polymerization (DP) of 3 to 7 (G3 to G7) are taken up via a maltodextrin-specific (Mdx) ATP-binding cassette (ABC) transport system (42). This system is made up of a maltodextrin-binding protein (MdxE) and two membrane proteins (MdxF and MdxG), as well as an ATPase (MsmX). The basic model proposed for the transport and metabolism of maltooligosaccharides includes a series of carbohydrate-hydrolyzing and -transferring enzymes. However, the enzymatic hydrolysis of maltodextrins and glycogen, providing a major energy reservoir in prokaryotes, was not reflected in the model, due probably to a lack of experimental analysis. Unlike those in Bacillus spp., the transport and metabolic systems for maltodextrins in Escherichia coli have been investigated extensively (7, 9, 10). A model for maltose metabolism involving an α-glucanotransferase (MalQ), a maltodextrin glucosidase (MalZ), and a maltodextrin phosphorylase (MalP) was proposed previously based on analyses of the breakdown of 14C-labeled maltodextrins in various knockout mutants (10).Ninety bacterial genomes were analyzed to identify the enzymes involved in sugar metabolism, and the results suggested that bacterial enzymes for the synthesis and degradation of glycogen belong to the glucosyltransferase and glycosidase/transglycosidase families, respectively. Free-living bacteria such as B. subtilis carry a minimal set of enzymes for glycogen metabolism, encoded by the glg operon of five genes. The four genes most proximal to the promoter encode enzymes for the synthesis of glycogen, including a branching enzyme (glgB), an ADP-glucose phyrophosphorylase (glgC and glcD), and a glycogen synthase (glgA). On the other hand, the most distal gene, glgP, encodes a glycogen phosphorylase (a member of glycosyltransferase family 35) (13, 18), which degrades glycogen branches by forming glucose-1-phosphate (glucose-1-P). B. subtilis carries two additional enzymes encoded at separate loci, a maltogenic amylase (MAase [YvdF, encoded at 304°]) and a pullulanase (AmyX, encoded at 262°), which have been known to degrade glycogen in vitro (15, 31). These two enzymes are ubiquitous among Bacillus spp. and may play an important role in glycogen and maltodextrin metabolism in the bacteria (see Table S1 in the supplemental material).The MAase YvdF in B. subtilis 168 and its homologue in B. subtilis SUH4-2 share 99% identity at both the nucleotide and amino acid sequence levels (4). MAase (EC 3.2.1.133) is a multisubstrate enzyme that acts on substrates such as cyclodextrin (CD), maltooligosaccharides, pullulan, starch, and glycogen (4). MAase belongs to a subfamily of glycoside hydrolase family 13, along with cyclodextrinase (EC 3.2.1.54), neopullulanase (EC 3.2.1.135), and Thermoactinomyces vulgaris R-47 α-amylase II (46). Although the catalytic properties and tertiary structure of MAase have been studied extensively (33), its physiological role in the bacterial cell is yet to be elucidated. The expression pattern of MAase in B. subtilis 168 has been investigated by monitoring the β-galactosidase activity expressed from the yvdF promoter in defined media containing various carbon sources (20). The yvdF promoter is induced in medium containing maltose, starch, or β-CD but is repressed in the presence of glucose, fructose, sucrose, or glycerol as the sole carbon source. In a previous study, Spo0A, a master regulator determining the life cycle of B. subtilis, was shown to be related to the expression of MAase in a positive manner (20). Kiel et al. (18) reported that the glycogen operon in B. subtilis is turned on during sporulation by RNA polymerase containing σE. This finding indicated that MAase, along with glycogen phosphorylase and pullulanase, might be involved in the metabolism of maltodextrin and glycogen in vivo.Pullulanases are capable of hydrolyzing the α-1,6-glycosidic linkages of pullulan to form maltotriose (2, 11, 15, 28, 31, 38). In particular, type I pullulanases have been reported to hydrolyze the α-1,6-glycosidic linkages in branched oligosaccharides such as starch, amylopectin, and glycogen, forming maltodextrins linked by α-1,4-glycosidic linkages (11). Pullulanase is also known as a debranching enzyme. The enzymatic properties and three-dimensional structure of AmyX from B. subtilis 168 were investigated by Malle et al. (28). However, to date, the physiological function of pullulanase encoded by amyX has not been investigated.The aim of this study was to elucidate the physiological functions of MAase and pullulanase, specifically concentrating on their roles in the degradation of maltodextrin and glycogen in B. subtilis. For this purpose, studies of the localization of the enzymes, the accumulation of glycogen, and the distribution of glycogen side chains were performed using the wild type and knockouts of MAase- and pullulanase-related genes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号