首页 | 本学科首页   官方微博 | 高级检索  
   检索      


New Antibiotic Molecules: Bypassing the Membrane Barrier of Gram Negative Bacteria Increases the Activity of Peptide Deformylase Inhibitors
Authors:Laurent Mamelli  Sylvain Petit  Jacqueline Chevalier  Carmela Giglione  Aurélie Lieutaud  Thierry Meinnel  Isabelle Artaud  Jean-Marie Pagès
Abstract:

Background

Multi-drug resistant (MDR) bacteria have become a major concern in hospitals worldwide and urgently require the development of new antibacterial molecules. Peptide deformylase is an intracellular target now well-recognized for the design of new antibiotics. The bacterial susceptibility to such a cytoplasmic target primarily depends on the capacity of the compound to reach and accumulate in the cytosol.

Methodology/Principal Findings

To determine the respective involvement of penetration (influx) and pumping out (efflux) mechanisms to peptide deformylase inhibitors (PDF-I) activity, the potency of various series was determined using various genetic contexts (efflux overproducers or efflux-deleted strains) and membrane permeabilizers. Depending on the structure of the tested molecules, two behaviors could be observed: (i) for actinonin the first PDF-I characterized, the AcrAB efflux system was the main parameter involved in the bacterial susceptibility, and (ii), for the lastest PDF-Is such as the derivatives of 2-(5-bromo-1H-indol-3-yl)-N-hydroxyacetamide, the penetration through the membrane was a important limiting step.

Conclusions/Significance

Our results clearly show that the bacterial membrane plays a key role in modulating the antibacterial activity of PDF-Is. The bacterial susceptibility for these new antibacterial molecules can be improved by two unrelated ways in MDR strains: by collapsing the Acr efflux activity or by increasing the uptake rate through the bacterial membrane. The efficiency of the second method is associated with the nature of the compound.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号