首页 | 本学科首页   官方微博 | 高级检索  
     


Syntheses of aliphatic polycarbonates from 2'-deoxyribonucleosides
Authors:Suzuki Masato  Sekido Toyokazu  Matsuoka Shin-ichi  Takagi Koji
Affiliation:Department of Materials Science and Engineering, Nagoya Institute of Technology, Nagoya, Japan. suzuki.masahito@nitech.ac.jp
Abstract:Poly(2'-deoxyadenosine) and poly(thymidine) constructed of carbonate linkages were synthesized by polycondensation between silyl ether and carbonylimidazolide at the 3'- and 5'-positions of the 2'-deoxyribonucleoside monomers. The N-benzoyl-2'-deoxyadenosine monomer afforded the corresponding polycarbonate together with the cyclic oligomers. However, the deprotection of the N-benzoyl group resulted in the scission of the polymer main chain. Thus, the N-unprotected 2'-deoxyadenosine monomers were examined for polycondensation. However, there was involved the undesired reaction between the adenine amino group and the carbonylimidazolide to form the carbamate linkage. In order to exclude this unfavorable reaction, dynamic protection was employed. Strong hydrogen bonding was used in place of the usual covalent bonding for reducing the nucleophilicity of the adenine amino group. Herein, 3',5'-O-diacylthymidines that form the complementary hydrogen bonding with the adenine amino group were added to the polymerization system of the N-unprotected 2'-deoxyadenosine monomer. Consequently, although the oligomers (M(n) = 1000-1500) were produced, the contents of the carbamate group were greatly reduced. The dynamic protection reagents were easily and quantitatively recovered as the MeOH soluble parts from the polymerization mixtures. In the polycondensation of the thymidine monomer, there tended to be involved another unfavorable reaction of carbonate exchange, which consequently formed the irregular carbonate linkages at not only the 3'-5' but also the 3'-3' and 5'-5' positions. Employing the well-designed monomer suppressed the carbonate exchange reaction to produce poly(thymidine) with the almost regular 3'-5'carbonate linkages.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号