首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Changes in synaptic potential properties during acetylcholine receptor accumulation and neurospecific interactions in Xenopus nerve-muscle cell culture
Authors:Y Kidokoro  MJ Anderson  Raphael Gruener
Institution:1. The Salk Institute, P. O. Box 85800, San Diego, California 92138 USA;1. Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona 85724 USA
Abstract:Acetylcholine receptors in the muscle cell membrane accumulate at the nerve contact area in Xenopus cell cultures. The correlation between spontaneous synaptic potential properties and extent of acetylcholine receptor accumulation was studied. Small and infrequent miniature endplate potentials were measured before acetylcholine receptor accumulation which was observed with fluorescence microscopy using tetramethylrhodamine-conjugated α-bungarotoxin. As acetylcholine receptors accumulate at the nerve contact area, these synaptic potentials become larger and their frequency increases dramatically. In nerve-contacted muscle cells where spontaneous synaptic activity could not be detected, extensive acetylcholine receptor accumulation was not found at sites of nerve contact. Furthermore, muscle cells which exhibited extensive acetylcholine receptor accumulation along the nerve always produced miniature endplate potentials. Thus acetylcholine receptor accumulation and the presence of miniature endplate potentials were strongly correlated. Noncholinergic neurons from dorsal root ganglia did not form functional synaptic contacts with muscle cells nor acetylcholine receptor accumulation along the path of contact. Furthermore, explants from tadpole spinal cord formed functional synaptic contacts with muscle cells but rarely caused AChR localization. These data are discussed in terms of developmental processes during neuromuscular junction formation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号