首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The stability and translation of sea urchin histone messenger RNA molecules injected into Xenopus laevis eggs and developing embryos
Authors:HR Woodland  FH Wilt
Institution:1. Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, England;2. Department of Zoology, University of California, Berkeley, California 94720 USA
Abstract:Embryonic sea urchin histone mRNA was injected into eggs and developing zygotes of Xenopus. The functional stability of the mRNA was monitored by separating newly synthesized sea urchin histones from those of Xenopus. Just as when injected into Xenopus oocytes, sea urchin H1, H2A, and H2B mRNA molecules have a functional half-life of about 3 hr in the developing embryo. This suggests that the endogenous Xenopus histone mRNA is also unstable and has a number of implications for the amount of histone mRNA that is stored in the oocyte and the time at which histone genes should become active in development. The injected mRNA is translated with little, if any, greater efficiency in the egg than in the oocyte. However, Xenopus histone synthesis increases about 20- to 50-fold during the transition from oocyte to egg. The injection experiments therefore suggest that this increase is brought about primarily by the mobilization of stored mRNA, rather than an increase in the efficiency of histone synthesis.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号