Abstract: | Autoimmune T lymphocyte lines have been established from unprimed normal rat lymph node cell populations. In a first, negative-selection round, spontaneously proliferating (SMLR) T cells were eliminated by a pulse of BUdR followed by short wave light irradiation. In a second, positive-selection round, the SMLR-depleted populations were confronted with MBP presented by syngeneic spleen adherent cells. Reactive T cells were propagated until stable, permanent T lines were established. All lines were exclusively specific for the selecting antigen, MBP, and were restricted in recognition by determinants of the own MHC. All lines expressed the differentiation marker W3/25, but not OX8. Line vLe, which was derived from Lewis (LEW) rat lymphocytes, and which recognized the encephalitogenic sequence 48-88 of MBP, was extremely efficient in mediating EAE to normal untreated LEW rats. Doses of 1 X 10(6) and greater transferred lethal EAE, whereas transient although definite disease was caused by a minimum of 1 X 10(4) cells. Rats recovering from disease were resistant against subsequent active induction of EAE. In contrast, BN rat-derived line vBN was completely incapable of transferring EAE to syngeneic rats. This lack of encephalitogenicity was a property of the T line, because vLe cells transferred severe EAE to (LEW X BN)F1 hybrid rats, whereas none of hybrid rats injected with vBN cells showed any sign of disease. The data provide strong evidence in favor of the presence of potentially autoaggressive T clones in the normal immune system, and they might suggest that the actual proportion of these clones within the natural T cell repertoire is genetically determined. |