首页 | 本学科首页   官方微博 | 高级检索  
     


Disialogangliosides and their interaction with cholera toxin - investigation by molecular modeling, molecular mechanics and molecular dynamics
Authors:Jeya Sundara Sharmila D  Veluraja K
Affiliation:Department of Physics, Manonmaniam Sundaranar University, Tirunelveli 627012, India.
Abstract:Molecular mechanics and molecular dynamics studies are performed to investigate the conformational preference of cell surface disialogangliosides (GD1A, GD1B and GD3) in aqueous environment. The molecular mechanics calculation reveals that water mediated hydrogen bonding network plays a significant role in the structural stabilization of GD1A, GD1B and GD3. These water mediated hydrogen bonds not only exist between neighboring residues but also exist between residues that are separated by 2 to 3 residues in between. The conformational energy difference between different conformational states of gangliosides correlates very well with the number of water mediated and direct hydrogen bonds. The spatial flexibility of NeuNAc of gangliosides at the binding site of cholera toxin is worked out. The NeuNAc has a limited allowed eulerian space at the binding site of Cholera Toxin (2.4%). The molecular modeling, molecular mechanics and molecular dynamics of disialoganglioside-cholera toxin complex reveal that cholera toxin can accommodate the disialoganglioside GD1A in three different modes. A single mode of binding is permissible for GD1B and GD3. Direct and water mediated hydrogen bonding interactions stabilizes these binding modes and play an essential role in defining the order of specificity for different disialogangliosides towards cholera toxin. This study not only provides models for the disialoganglioside-cholera toxin complexes but also identifies the NeuNAc binding site as a site for design of inhibitors that can restrict the pathogenic activity of cholera toxin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号