首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Cation-dependent transition between the quadruplex and Watson-Crick hairpin forms of d(CGCG3GCG).
Authors:C C Hardin  T Watson  M Corregan  C Bailey
Institution:Department of Biochemistry, North Carolina State University, Raleigh 27695.
Abstract:The DNA oligonucleotide d(CGCG3GCG) can form either a Watson-Crick (WC) hairpin or a parallel-stranded quadruplex structure containing six G-quartet base pair assemblies. The exchange between these forms and single strands can be monitored using circular dichroism (CD). NMR results verified the assignment of specific CD bands to quadruplex and hairpin species, respectively. Cations stabilize the quadruplex in the order K+ greater than Ca2+ greater than Na+ greater than Mg2+ greater than Li+ and K+ greater than Rb+ greater than Cs+, indicating that K+ has an optimum ionic radius for complex formation and that ionic charge affects the extent of ion-induced stabilization. The quadruplex is stable in the presence of 40 mM K+ at micromolar DNA concentration and can be kinetically trapped as a metastable form when prepared at millimolar DNA concentration and then diluted into buffer containing 40 mM Na+. The concentration of K+ required to reverse the equilibrium from the hairpin to the quadruplex decreases sharply with increased DNA concentration. The quadruplex has an unusual pKa of ca. 6.8, indicating that C.C+ base pairs are probably forming. This system provides insights into some of the detailed structural characteristics of a "G4-DNA".ion] complex and an experimental model for the recently proposed "sodium-potassium conformational switch" Sen, D., & Gilbert, W. (1988) Nature 334, 364-366; Sen, D., & Gilbert, W. (1990) Nature 344, 410-414]. These results may help to explain the lack of cytidine residues in G-rich telomeric DNAs and suggest that methylation of GC-rich duplex DNAs in "GpC islands" may induce quadruplex formation within heterochromatin domains, resulting in reversible chromosomal condensation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号