首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Two homologous putative protein tyrosine phosphatases, OsPFA-DSP2 and AtPFA-DSP4, negatively regulate the pathogen response in transgenic plants
Authors:He Hanjie  Su Jianbin  Shu Shengying  Zhang Yang  Ao Ying  Liu Bing  Feng Dongru  Wang Jinfa  Wang Hongbin
Institution:Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.
Abstract:Protein phosphatases, together with protein kinases, regulate protein phosphorylation and dephosphorylation, and play critical roles in plant growth and biotic stress responses. However, little is known about the biological functions of plant protein tyrosine dual-specificity phosphatase (PFA-DSP) in biotic stresses. Here, we found that OsPFA-DSP2 was mainly expressed in calli, seedlings, roots, and young panicles, and localized in cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP2 in rice increased sensitivity to Magnaporthe grisea (M. grisea Z1 strain), inhibited the accumulation of hydrogen peroxide (H(2)O(2)) and suppressed the expression of pathogenesis-related (PR) genes after fungal infection. Interestingly, transgenic Arabidopsis plants overexpressing AtPFA-DSP4, which is homologous to OsPFA-DSP2, also exhibited sensitivity to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), reduced accumulation of H(2)O(2) and decreased photosynthesic capacity after infection compared with Col-0. These results indicate that OsPFA-DSP2 and AtPFA-DSP4 act as negative regulators of the pathogen response in transgenic plants.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号