首页 | 本学科首页   官方微博 | 高级检索  
     


Motor fatigue measurement by distance-induced slow down of walking speed in multiple sclerosis
Authors:Phan-Ba Rémy  Calay Philippe  Grodent Patrick  Delrue Gael  Lommers Emilie  Delvaux Valérie  Moonen Gustave  Belachew Shibeshih
Affiliation:MYelin Disorders REseArch teaM, Liège, Belgium. remy.phanba@chu.ulg.ac.be
Abstract:

Background and rationale

Motor fatigue and ambulation impairment are prominent clinical features of people with multiple sclerosis (pMS). We hypothesized that a multimodal and comparative assessment of walking speed on short and long distance would allow a better delineation and quantification of gait fatigability in pMS. Our objectives were to compare 4 walking paradigms: the timed 25-foot walk (T25FW), a corrected version of the T25FW with dynamic start (T25FW+), the timed 100-meter walk (T100MW) and the timed 500-meter walk (T500MW).

Methods

Thirty controls and 81 pMS performed the 4 walking tests in a single study visit.

Results

The 4 walking tests were performed with a slower WS in pMS compared to controls even in subgroups with minimal disability. The finishing speed of the last 100-meter of the T500MW was the slowest measurable WS whereas the T25FW+ provided the fastest measurable WS. The ratio between such slowest and fastest WS (Deceleration Index, DI) was significantly lower only in pMS with EDSS 4.0–6.0, a pyramidal or cerebellar functional system score reaching 3 or a maximum reported walking distance ≤4000 m.

Conclusion

The motor fatigue which triggers gait deceleration over a sustained effort in pMS can be measured by the WS ratio between performances on a very short distance and the finishing pace on a longer more demanding task. The absolute walking speed is abnormal early in MS whatever the distance of effort when patients are unaware of ambulation impairment. In contrast, the DI-measured ambulation fatigability appears to take place later in the disease course.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号