首页 | 本学科首页   官方微博 | 高级检索  
     


Comparative study on the therapeutic potential of neurally differentiated stem cells in a mouse model of multiple sclerosis
Authors:Payne Natalie L  Sun Guizhi  Herszfeld Daniella  Tat-Goh Pollyanna A  Verma Paul J  Parkington Helena C  Coleman Harold A  Tonta Mary A  Siatskas Christopher  Bernard Claude C A
Affiliation:Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia.
Abstract:

Background

Transplantation of neural stem cells (NSCs) is a promising novel approach to the treatment of neuroinflammatory diseases such as multiple sclerosis (MS). NSCs can be derived from primary central nervous system (CNS) tissue or obtained by neural differentiation of embryonic stem (ES) cells, the latter having the advantage of readily providing an unlimited number of cells for therapeutic purposes. Using a mouse model of MS, we evaluated the therapeutic potential of NSCs derived from ES cells by two different neural differentiation protocols that utilized adherent culture conditions and compared their effect to primary NSCs derived from the subventricular zone (SVZ).

Methodology/Principal Findings

The proliferation and secretion of pro-inflammatory cytokines by antigen-stimulated splenocytes was reduced in the presence of SVZ-NSCs, while ES cell-derived NSCs exerted differential immunosuppressive effects. Surprisingly, intravenously injected NSCs displayed no significant therapeutic impact on clinical and pathological disease outcomes in mice with experimental autoimmune encephalomyelitis (EAE) induced by recombinant myelin oligodendrocyte glycoprotein, independent of the cell source. Studies tracking the biodistribution of transplanted ES cell-derived NSCs revealed that these cells were unable to traffic to the CNS or peripheral lymphoid tissues, consistent with the lack of cell surface homing molecules. Attenuation of peripheral immune responses could only be achieved through multiple high doses of NSCs administered intraperitoneally, which led to some neuroprotective effects within the CNS.

Conclusion/Significance

Systemic transplantation of these NSCs does not have a major influence on the clinical course of rMOG-induced EAE. Improving the efficiency at which NSCs home to inflammatory sites may enhance their therapeutic potential in this model of CNS autoimmunity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号