Normal T-cell development and immune functions in TRIM-deficient mice |
| |
Authors: | Kölsch Uwe Arndt Börge Reinhold Dirk Lindquist Jonathan A Jüling Nicole Kliche Stefanie Pfeffer Klaus Bruyns Eddy Schraven Burkhart Simeoni Luca |
| |
Affiliation: | Institute of Immunology, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany. |
| |
Abstract: | The transmembrane adaptor molecule TRIM is strongly expressed within thymus and in peripheral CD4(+) T cells. Previous studies suggested that TRIM is an integral component of the T-cell receptor (TCR)/CD3 complex and might be involved in regulating TCR cycling. To elucidate the in vivo function of TRIM, we generated TRIM-deficient mice by homologous recombination. TRIM(-/-) mice develop normally and are healthy and fertile. However, the animals show a mild reduction in body weight that appears to be due to a decrease in the size and/or cellularity of many organs. The morphology and anatomy of nonlymphoid as well as primary and secondary lymphoid organs is normal. The frequency of thymocyte and peripheral T-cell subsets does not differ from control littermates. In addition, a detailed analysis of lymphocyte development revealed that TRIM is not required for either positive or negative selection. Although TRIM(-/-) CD4(+) T cells showed an augmented phosphorylation of the serine/threonine kinase Akt, the in vitro characterization of peripheral T cells indicated that proliferation, survival, activation-induced cell death, migration, adhesion, TCR internalization and recycling, TCR-mediated calcium fluxes, tyrosine phosphorylation, and mitogen-activated protein family kinase activation are not affected in the absence of TRIM. Similarly, the in vivo immune response to T-dependent and T-independent antigens as well as the clinical course of experimental autoimmune encephalomyelitis, a complex Th1-mediated autoimmune model, is comparable to that of wild-type animals. Collectively, these results demonstrate that TRIM is dispensable for T-cell development and peripheral immune functions. The lack of an evident phenotype could indicate that TRIM shares redundant functions with other transmembrane adaptors involved in regulating the immune response. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|