首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization,development and mapping of Unigene-derived microsatellite markers in sorghum [Sorghum bicolor (L.) Moench]
Authors:R. Nagaraja Reddy  R. Madhusudhana  S. Murali Mohan  D. V. N. Chakravarthi  N. Seetharama
Affiliation:(1) Marker Assisted Selection Lab, Directorate of Sorghum Research (DSR), Rajendranagar, Hyderabad, 500 030, India;(2) Directorate of Medicinal and Aromatic Plants Research (DMAPR), Anand, Gujarat, 387 310, India;(3) International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, 502 324, India;
Abstract:Molecular variation within known genes controlling specific functions provide candidate gene-based markers which are tightly linked with the trait of interest. Unigene-derived microsatellite markers, with their unique identity and positions, offer the advantage of unraveling variation in the expressed component of the genome. We characterized ≥12-bp-long microsatellite loci from 13,899 unique sequences of sorghum [Sorghum bicolor (L.) Moench] available in the NCBI unigene database for their abundance and possible use in sorghum breeding. Analysis of 12,464 unigenes (≥200-bp) using MISA software identified 14,082 simple sequence repeats (SSRs) in 7,370 unigenes, from which 1,519 unigene SSR markers were developed. The average frequency of SSR was 1 per1.6 kb and 1.0 per 1.1 unigene; hexamers followed by trimers were found in abundance, of which 33.3% AT-rich and CCG repeats were the most abundant. Of the 302 unigene SSRs tested, 60 (19.8%) were polymorphic between the two parents, M35-1 and B35 of a recombinant inbred line (RIL) mapping population. A mapping population consisting of 500 RILs was developed using the above two parents, and a subset of random 245 RILs was used for genotyping with polymorphic SSRs. We developed a linkage map containing 231 markers, of which 228 (174 genomic and 54 genic) were microsatellites and three were morphological markers. Markers were distributed over 21 linkage groups, and spanned a genetic distance of 1235.5 cM. This map includes 81 new SSRs, of which 35 (21 unigene and 14 genomic) were developed in the present study and 46 from other studies. The order of the SSR markers mapped in the present study was confirmed physically by BLAST search against the whole-genome shotgun sequence of sorghum. Many unigene sequences used for marker development in this study include genes coding for important regulatory proteins and functional proteins that are involved in stress-related metabolism. The unigene SSR markers used together with other SSR markers to construct the sorghum genetic map will have applications in studies on comparative mapping, functional diversity analysis and association mapping, and for quantitative trait loci detection for drought and other agronomically important traits in sorghum.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号