首页 | 本学科首页   官方微博 | 高级检索  
     


Temperature manifold for a stopped-flow machine to allow measurements from −10 to +40 °C
Authors:Jonathan Walklate  Michael A. Geeves
Affiliation:School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
Abstract:Conducting enzymatic stopped-flow experiments at temperatures far removed from ambient can be very problematic because extremes in temperature (<10 °C or >30 °C) can damage the machine or the enzyme. We have devised a simple manifold that can be attached to most commercial stopped-flow systems that is independently heated or cooled separate from the main stopped-flow system. Careful calibration of the flow circuit allows the sample to be heated or cooled to the measurement temperature (−8 to +40 °C) 1 to 2 s before mixing in the reaction chamber. This approach allows measurements at temperatures where the stopped flow or the protein is normally unstable. To validate the manifold, we investigated the well-defined ATP-induced dissociation of rabbit muscle myosin subfragment 1 (S1) from its complex with pyrene-labeled actin. This process has both temperature-dependent and -independent components. Use of ethylene glycol allowed us to measure the reaction below 0 °C and up to 42 °C, and as expected the second-order rate constant (K1k+2) and the maximum rate of dissociation (k+2) both increased with temperature, whereas 1/K1 is unaffected by the change in temperature.
Keywords:Transient kinetics   Fast reactions   Physiological temperatures   Subzero temperatures
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号