首页 | 本学科首页   官方微博 | 高级检索  
     


Positive selection improves the efficiency of DNA assembly
Authors:Chang-Ho Baek  Jonathan ChesnutFederico Katzen
Affiliation:Thermo Fisher Scientific, Carlsbad, CA 92008, USA
Abstract:With the advent of synthetic biology and cell engineering, the demand for large synthetic DNA fragments has been steadily increasing. Consequently, a number of multi-fragment cloning technologies optimized for the assembly of sizable DNA constructs have been developed. Still, screening for the right clone can be tedious because the high incidence of illegitimate assembly results in a relatively large proportion of missing or shuffled DNA elements. To mitigate this risk, we have developed a strategy that reduces the rate of fragment mis-assembly and is compatible with a variety of cloning methodologies. The approach is based on the positive selection of truncated plasmid markers, which are rendered active by providing their missing sequences during the assembly process. The method has been successfully validated in the context of complex in vivo and in vitro homologous recombination workflows, but it could be readily adapted to other cloning strategies, including those based on restriction endonucleases.
Keywords:Positive selection   Cloning   DNA assembly   Synthetic biology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号