首页 | 本学科首页   官方微博 | 高级检索  
     


Exercise promotes a subcellular redistribution of calcium-stimulated protease activity in striated muscle.
Authors:G D Arthur  T S Booker  A N Belcastro
Affiliation:School of Rehabilitation Sciences, The University of British Columbia, Vancouver, Canada.
Abstract:The aims of this study were (i) to investigate whether the contractile activity associated with running increases calcium-stimulated, calpastatin-inhibited protease activity (calpain-like) in a time-dependent manner and (ii) to determine whether the changes, if any, are proportionately distributed between soluble (cytosolic) and particulate (bound) fractions of striated muscle in vivo. Calcium-dependent, calpastatin-inhibited caseinolysis (i.e., calpain-like activity) was measured in control and exercised rats (25 m/min, 0% grade) at 2, 5, 15, 30, and 60 min. Total calpain-like activity in skeletal muscle increased by 26% (13.2 +/- 1.3 vs. 17.9 +/- 2.2 U/g wet wt.) (p < 0.05) after running (60 min), accompanied by an increased activity in the particulate fraction. In cardiac muscle, exercise (60 min) increased total calpain-like activity by 33% (p < 0.05), which was attributable to increases in both the cytosolic and particulate fractions. Both tissues responded with an early (2-5 min) activation of total calpain-like activity (p < 0.05), supported by early increases for particulate fractions from skeletal muscle; whereas for cardiac muscle, a noticeable early drop (p < 0.05) occurred in the particulate fraction. Minimal changes were observed for total, cytosolic, and particulate fractions of noncontracting tissue (i.e., liver). The results of this study support the hypothesis that the total calpain-like activity increases associated with level running occur early on with exercise and that the increases are accompanied by changes in the redistribution of soluble to particulate fractions. The changes would set the stage for enhanced rates of protein degradation known to occur in striated muscle with exercise.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号