首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of inbreeding depression in mixed-mating plants provides evidence for selective interference and stable mixed mating
Authors:Winn Alice A  Elle Elizabeth  Kalisz Susan  Cheptou Pierre-Olivier  Eckert Christopher G  Goodwillie Carol  Johnston Mark O  Moeller David A  Ree Richard H  Sargent Risa D  Vallejo-Marín Mario
Affiliation:Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, USA. winn@bio.fsu.edu
Abstract:Hermaphroditic individuals can produce both selfed and outcrossed progeny, termed mixed mating. General theory predicts that mixed-mating populations should evolve quickly toward high rates of selfing, driven by rapid purging of genetic load and loss of inbreeding depression (ID), but the substantial number of mixed-mating species observed in nature calls this prediction into question. Lower average ID reported for selfing than for outcrossing populations is consistent with purging and suggests that mixed-mating taxa in evolutionary transition will have intermediate ID. We compared the magnitude of ID from published estimates for highly selfing (r > 0.8), mixed-mating (0.2 ≤ r ≥ 0.8), and highly outcrossing (r < 0.2) plant populations across 58 species. We found that mixed-mating and outcrossing taxa have equally high average lifetime ID (δ= 0.58 and 0.54, respectively) and similar ID at each of four life-cycle stages. These results are not consistent with evolution toward selfing in most mixed-mating taxa. We suggest that prevention of purging by selective interference could explain stable mixed mating in many natural populations. We identify critical gaps in the empirical data on ID and outline key approaches to filling them.
Keywords:Age‐specific expression of inbreeding depression  gynodioecy  mating‐system evolution  outcrossing  purging  selfing
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号