首页 | 本学科首页   官方微博 | 高级检索  
     


Sulfate reduction and possible aerobic metabolism of the sulfate-reducing bacterium Desulfovibrio oxyclinae in a chemostat coculture with Marinobacter sp. Strain MB under exposure to increasing oxygen concentrations
Authors:Sigalevich P  Baev M V  Teske A  Cohen Y
Affiliation:Division of Microbial and Molecular Ecology, Moshe Shilo Minerva Center for Marine Biogeochemistry, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Abstract:A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae together with a facultative aerobe heterotroph tentatively identified as Marinobacter sp. strain MB was grown under anaerobic conditions and then exposed to a stepwise-increasing oxygen influx (0 to 20% O(2) in the incoming gas phase). The coculture consumed oxygen efficiently, and no residual oxygen was detected with an oxygen supply of up to 5%. Sulfate reduction persisted at all levels of oxygen input, even at the maximal level, when residual oxygen in the growth vessel was 87 microM. The portion of D. oxyclinae cells in the coculture decreased gradually from 92% under anaerobic conditions to 27% under aeration. Both absolute cell numbers and viable cell counts of the organism were the same as or even higher than those observed in the absence of oxygen input. The patterns of consumption of electron donors and acceptors suggest that aerobic incomplete oxidation of lactate to acetate is performed by D. oxyclinae under high oxygen input. Both organisms were isolated from the same oxic zone of a cyanobacterial mat where they have to adapt to daily shifts from oxic to anoxic conditions. This type of syntrophic association may occur in natural habitats, enabling sulfate-reducing bacteria to cope with periodic exposure to oxygen.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号