首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conformational energy calculations on glycosylated turns in glycoproteins
Authors:C Allen Bush
Abstract:Analysis of the amino acid sequence of glycoproteins has suggested the β-turn as a likely site of glycosylation in glycoproteins. According to this model, the peptide chain traverses the interior of a globular protein, reversing its direction at the protein surface, a likely point for the attachment of hydrophilic carbohydrate residues. In order to search for plausible conformations of glycosylated β-turns in asparagine-linked glycoproteins, we have adapted the conformational energy calculation method of Scheraga and coworkers for use in carbohydrates. The parameters for nonbonded and hydrogen-bonded interactions have been published, and electrostatic parameters are derived from a CNDO calculation on a model glycopeptide. Our results indicate that the orientation of the glycosyl amide bond having the amide proton nearly trans to the anomeric proton of the sugar has the lowest energy. Although CD and nmr experiments in our laboratory have consistently found this conformation, our calculations show the conformation having these two protons in a cis relationship to lie very close in energy. Calculations on the glycopeptide linkage model, α-N-acetyl, δ-N(2-acetamido-1,2-dideoxy-β-D -glucopyranosyl)-N′-methyl-L -asparaginyl amide show that several distinct geometries are allowed for glycosylated β-turns. For a type I β-turn, three conformations of the glycosylated side chain are found within 4 kcal of the minimum, while two conformations of the glycosylated side chain are allowed for a type II turn. The hydrogen-bonded C7 conformation is also allowed. Stereoviews of the low-energy conformations reveal no major hydrogen-bonding interaction between the peptide and sugar.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号