首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hydrodynamics,size, and shape of bacteriophage T4D tails and baseplates
Authors:Julyet A Benbasat  Victor A Bloomfield
Abstract:We have used translational diffusion coefficient measurements and subunit hydrodynamic theory to determine the dimensions and shape of bacterioophage T4D baseplates and tails. The diffusion coefficient of the baseplate, measured by quasielastic laser light scattering (QLS), was determined previously by Wagenknecht and Bloomfield to be D = 8.56 × 10?8 cm2/s. For the tail, we found D = 5.88 × 10?8 cm2/s by QLS, and D = 6.02 × 10?8 cm2/s by combining sedimentation coefficient and molecular weight in the Svedberg equation. These values, which have an uncertainty of ±2.7%, when combined with subunit hydrodynamic theory, enabled us to refine estimates of dimensions obtained by electron microscopy. For the hexagonal baseplate, the vertex-to-vertex distance is about 480 Å, the thickness is 160 Å, and there are six extended short fibers 320-Å long and 40 Å in diameter. When a baseplate of these dimensions is attached to a tail tube-sheath-connector complex 1050-Å long and 240 Å in diameter, the calculated D is 5.93 × 10?8 cm2/s, within 1% of experiment. This combined use of electron microscopy and hydrodynamics, using the former to ascertain shape, and the latter to obtain solution dimensions, is a powerful approach to the structure of biomolecular complexes.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号