首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Lactate Uptake and Release in the Presence of Glucose by Sympathetic Ganglia of Chicken Embryos and by Neuronal and Nonneuronal Cultures Prepared from These Ganglia
Authors:Martin G Larrabee
Abstract:Abstract: Uptake and output of lactate were measured in lumbar sympathetic chains excised from embryos of white leghorn chickens, 14–15 days old. The chains, typically containing 30–40 μg of protein, were incubated in Eagle's minimum essential medium containing bicarbonate buffer, 6–17 mM glucose, various concentrations of lactate, and either U-14C]lactate, 1-14C]glucose, or 6-14C]glucose. The average rate of uptake of labeled lactate was measured with incubations of 5–6 h, starting with various external lactate concentrations. From these data the instantaneous relation between lactate uptake rate and concentration was deduced with a simple computerized model. The instantaneous uptake rate increased with the concentration according to a relation that fit the Michaelis-Menten equation, with Vmax = 360 μmol/g protein/h and Km = 4.8 mM. Substantial fractions of the lactate carbon were recovered from tissue constituents and in several nonvolatile products in the medium, as well as in CO2. Glucose uptake averaged about 108 μmol/g protein/h and did not vary greatly with external lactate concentration, although the metabolic partitioning of glucose carbon was considerably affected. Regardless of initial concentration, the lactate concentration in the medium tended to change towards approximately 0.6 mM, showing that uptake equaled output at this level, with rates at about 40 μmol/g protein/h. With the steady-state concentration of 0.6 mM lactate, about 20% of the glucose carbon was shunted out into the medium before it was reabsorbed and metabolized into various products. Lactate uptakes by neuronal and nonneuronal cultures prepared from the ganglia did not differ consistently from one another or from uptake by undissociated ganglia. The neuronal cultures tended to oxidize a greater fraction of the consumed lactate to CO2 and to convert a smaller fraction of the lactate to products in the medium than did the nonneuronal cultures. Computer modeling, using known parameters for blood-brain transport of lactate in the adult rat and data on uptake by the ganglia, suggests that lactate may supply substantial fuel to the brain, even in the presence of abundant glucose, when the lactate concentration in the blood is raised to levels commonly observed in exercising humans, such as 10–20 mM. This is in agreement with the findings of several investigators in hypoglycemic humans and in animals with intermediate blood lactate concentrations.
Keywords:Neuronal metabolism  Lactate metabolism in sympathetic ganglia  Lactate metabolism in neuronal and nonneuronal cultures  Embryonic chicken ganglia  Models of lactate exchange
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号