Abstract: | Poly(L -lysine) of various molecular weights between 2700 and 475,000 was spin-labeled. From the electron spin resonance spectra, the degree of freedom of the nitroxide was determined by calculation of the rotational correlation time as the poly(L -lysine) underwent the pH-induced random coil to α-helix conformational transition. In general, the rotational correlation time of the nitroxide increased as the pH was increased, indicating a more restricted environment for the spin label when poly(L -lysine) is deprotonated. For the high-molecular-weight poly(L -lysine) this corresponds to the formation of the α-helix and indicates that the side chain–side chain interaction and decreased segmental motion of the backbone (slightly) restricts the motion of the spin label. For the 2700-molecular-weight poly(L -lysine), previously shown not to assume a helical conformation at high pH, the increase in the rotational correlation time of the spin label indicates that the side chain–side chain interaction takes place after deprotonation but without helix formation. This may indicate that helix formation per se is not needed to produce the observed effect even with the high-molecular-weight polymers. The rotational correlation time of the spin label at a particular pH did not depend on the molecular weight of the poly(L -lysine) over the 200-fold range of molecular weights. This indicates that the rotational correlation time reflects the rotational mobility of the spin label in a localized environment and not the rotational diffusion of the entire macromolecule. |