首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of the NC-Loop in Catalytic Activity and Stability in Lipase from Fervidobacterium changbaicum
Authors:Binchun Li  Guangyu Yang  Lie Wu  Yan Feng
Institution:1. State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China.; 2. Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, P. R. China.; University of Graz, Austria,
Abstract:Flexible NC-loops between the catalytic domain and the cap domain of the α/β hydrolase fold enzymes show remarkable diversity in length, sequence, and configuration. Recent investigations have suggested that the NC-loop might be involved in catalysis and substrate recognition in many enzymes from the α/β hydrolase fold superfamily. To foster a deep understanding of its role in catalysis, stability, and divergent evolution, we here systemically investigated the function of the NC-loop (residues 131–151) in a lipase (FClip1) from thermophilic bacterium Fervidobacterium changbaicum by loop deletion, alanine-scanning mutagenesis and site-directed mutagenesis. We found that the upper part of the NC-loop (residues 131–138) was of great importance to enzyme catalysis. Single substitutions in this region could fine-tune the activity of FClip1 as much as 41-fold, and any deletions from this region rendered the enzyme completely inactive. The lower part of the NC-loop (residues 139–151) was capable of enduring extensive deletions without loss of activity. The shortened mutants in this region were found to show both improved activity and increased stability simultaneously. We therefore speculated that the NC-loop, especially the lower part, would be a perfect target for enzyme engineering to optimize the enzymatic properties, and might present a hot zone for the divergent evolution of α/β hydrolases. Our findings may provide an opportunity for better understanding of the mechanism of divergent evolution in the α/β hydrolase fold superfamily, and may also guide the design of novel biocatalysts for industrial applications.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号