首页 | 本学科首页   官方微博 | 高级检索  
     


Phenotypic plasticity of starvation resistance in the butterfly Bicyclus anynana
Authors:Jeroen Pijpe  Paul M. Brakefield  Bas J. Zwaan
Affiliation:(1) Institute of Biology, Leiden University, P.O. Box 9516, 2300 RA Leiden, The Netherlands
Abstract:Starvation resistance is an important trait related to survival in many species and often involves dramatic changes in physiology and homeostasis. The tropical African butterfly Bicyclus anynana lives in two seasonal environments and has evolved phenotypic plasticity. The contrasting demands of the favourable, wet season and the harsh, dry season have shaped a remarkable life history, which makes this species particularly interesting for investigating the relationship between starvation resistance, metabolism, and its environmental modulation. This study reports on two laboratory experiments to investigate the effects of pre-adult and adult temperatures that mimic the seasonal environments, on starvation resistance and resting metabolic rate (RMR) in adult B. anynana. In addition, we investigate starvation resistance in wet and dry seasonal form genotypes; artificial selection on eyespot size has yielded lines that only produce one or the other of the seasonal forms across all rearing environments. As expected, the results show a large effect of adult temperature. More relevant, we show here that both pre-adult temperature and genetic background also influence adult starvation resistance, showing that phenotypic plasticity in this species includes starvation resistance. The dry season form genotype has a higher starvation resistance when developed at dry season temperatures, indicating a genetic modulation of starvation resistance in relation to temperature. Paradoxically, dry season pre-adult temperatures reduce starvation resistance and raise RMR. The high overall association of RMR and starvation resistance in our experiments suggests that energy expenditure and survival are linked, but that they may counteract each other in their influence on fitness in the dry season. We hypothesize that metabolism is moderating a trade-off between pre-adult (larval) survival and adult survival in the dry season.
Keywords:Life history  Metabolic rate  Temperature  Ageing  Insect  Survival  Genetic Variation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号