首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inbreeding and conservation genetics in whitebark pine
Authors:J Krakowski  SN Aitken  YA El-Kassaby
Institution:(1) Department of Forest Sciences, 3041-2424 Main Mall, University of British Columbia, Vancouver, B.C, V6T 1Z4, Canada
Abstract:Whitebark pine (Pinus albicaulisEngelm.) is threatened across its native rangeby an exotic fungal pathogen introduced withinthe last century. Mortality has beenextensive, and projected potential range shiftsbased on impending climate change have revealedfurther pressures to survival and adaptationfor this long-lived, high-elevation conifer. Quantifying genetic variation and the matingsystem of whitebark pine in its northern rangeprovides a basis for effective conservationmeasures. Isozyme analysis of vegetative budtissue revealed high expected heterozygosity(0.262), moderate population differentiation(FST = 0.061) and highly significantcorrelations between observed heterozygosityand geographic variables (R2 = 0.36,latitude; R2 = 0.30 longitude), supportingthe hypothesis that this species recolonizedits current northern range following glacialretreat from several refugia in the Washingtonand Oregon Cascades and in the northernRockies. Mating system analysis based onsimultaneous isozyme analyses of embryo andhaploid megagametophyte tissues foundrelatively high levels of consanguineous matingand selfing for a conifer (t m =0.73) within populations. Avian seeddistribution by the Clark's nutcracker (Nucifragia columbiana Wilson) appears to bethe overriding factor influencing geneticpatterns: being a mutualistic seed disperser,caches comprised of related seeds develop intoclumped stands with strong family substructure. While it is a critical wildlife habitatcomponent, lack of commercial utilization hasmade in situ adaptation the primaryconservation focus. Encouraging regenerationsuccess and nutcracker caching by maintainingnatural fire regimes will provide anecosystem-based conservation solution; however,in the Rocky Mountains between 52° N and47° N, disease-resistant individualsshould be located and propagated in order toensure long-term survival of the species inhigh pathogen hazard areas.
Keywords:mating system  Nucifragia columbiana  Pinus albicaulis  population structure
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号