首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Synthesis,Characterization, and Functionalization of Hybrid Au/CdS and Au/ZnS Core/Shell Nanoparticles
Authors:Andrew Tobias  Song Qing  Marcus Jones
Institution:1.Department of Chemistry, University of North Carolina at Charlotte;2.Nanosys Inc.
Abstract:Plasmonic nanoparticles are an attractive material for light harvesting applications due to their easily modified surface, high surface area and large extinction coefficients which can be tuned across the visible spectrum. Research into the plasmonic enhancement of optical transitions has become popular, due to the possibility of altering and in some cases improving photo-absorption or emission properties of nearby chromophores such as molecular dyes or quantum dots. The electric field of the plasmon can couple with the excitation dipole of a chromophore, perturbing the electronic states involved in the transition and leading to increased absorption and emission rates. These enhancements can also be negated at close distances by energy transfer mechanism, making the spatial arrangement of the two species critical. Ultimately, enhancement of light harvesting efficiency in plasmonic solar cells could lead to thinner and, therefore, lower cost devices. The development of hybrid core/shell particles could offer a solution to this issue. The addition of a dielectric spacer between a gold nanoparticles and a chromophore is the proposed method to control the exciton plasmon coupling strength and thereby balance losses with the plasmonic gains. A detailed procedure for the coating of gold nanoparticles with CdS and ZnS semiconductor shells is presented. The nanoparticles show high uniformity with size control in both the core gold particles and shell species allowing for a more accurate investigation into the plasmonic enhancement of external chromophores.
Keywords:Chemistry  Issue 109  Plasmon  nanoparticle  quantum dots  plasmonic enhancement  renewable energy  porphyrin  gold nanoparticle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号