首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Novel Protein Interactions with Endoglin and Activin Receptor-like Kinase 1: Potential Role in Vascular Networks
Authors:Guoxiong Xu  Miriam Barrios-Rodiles  Mirjana Jerkic  Andrei L Turinsky  Robert Nadon  Sonia Vera  Despina Voulgaraki  Jeffrey L Wrana  Mourad Toporsian  Michelle Letarte
Institution:3. Center Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, China;;4. Molecular Structure and Function Program, The Hospital for Sick Children, Toronto, Canada, M5G1X8;;5. Department of Immunology, University of Toronto, Toronto, Canada;6. Heart and Stroke Richard Lewar Center of Excellence, University of Toronto, Toronto, Canada;;12. Department of Human Genetics, McGill University, Montreal, Canada;;8. Pulmonary and Critical Care Division, Brigham and Women''s Hospital, Harvard Medical School, Boston, MA 02215
Abstract:Endoglin and activin receptor-like kinase 1 are specialized transforming growth factor-beta (TGF-β) superfamily receptors, primarily expressed in endothelial cells. Mutations in the corresponding ENG or ACVRL1 genes lead to hereditary hemorrhagic telangiectasia (HHT1 and HHT2 respectively). To discover proteins interacting with endoglin, ACVRL1 and TGF-β receptor type 2 and involved in TGF-β signaling, we applied LUMIER, a high-throughput mammalian interactome mapping technology. Using stringent criteria, we identified 181 novel unique and shared interactions with ACVRL1, TGF-β receptor type 2, and endoglin, defining potential novel important vascular networks. In particular, the regulatory subunit B-beta of the protein phosphatase PP2A (PPP2R2B) interacted with all three receptors. Interestingly, the PPP2R2B gene lies in an interval in linkage disequilibrium with HHT3, for which the gene remains unidentified. We show that PPP2R2B protein interacts with the ACVRL1/TGFBR2/endoglin complex and recruits PP2A to nitric oxide synthase 3 (NOS3). Endoglin overexpression in endothelial cells inhibits the association of PPP2R2B with NOS3, whereas endoglin-deficient cells show enhanced PP2A-NOS3 interaction and lower levels of endogenous NOS3 Serine 1177 phosphorylation. Our data suggest that endoglin regulates NOS3 activation status by regulating PPP2R2B access to NOS3, and that PPP2R2B might be the HHT3 gene. Furthermore, endoglin and ACVRL1 contribute to several novel networks, including TGF-β dependent and independent ones, critical for vascular function and potentially defective in HHT.Transforming growth factor-β (TGF-β)1 superfamily ligands, including TGF-βs, activins and bone morphogenic proteins (BMPs), regulate several pathways essential for vascular development and function (1). Responses to these ligands are controlled by type I and II serine kinase receptors, coreceptors and signaling SMAD intermediates. Endothelial cells express the coreceptor, endoglin, and the specialized type I receptor, ACVRL1 (activin receptor-like kinase 1 or ALK1); both molecules are critical for regulation of angiogenesis and vasomotor function by TGF-β superfamily ligands (2, 3).Mutations in ENG and ACVRL1 genes lead to hereditary hemorrhagic telangiectasia (HHT), types 1 and 2, respectively (4). HHT affects 1 in 5000–8000 people worldwide and is characterized by arteriovenous malformations (AVMs) in multiple organs, potentially leading to severe hemorrhages and strokes (4). Haploinsufficiency is the underlying cause of HHT, indicating that reduced levels of functional endoglin or ACVRL1 (ALK1) proteins predispose to endothelial dysfunction and AVMs (5). Although the mechanisms responsible for AVMs remain unclear, the elucidation of how members of the TGF-β superfamily and their molecular networks regulate vascular integrity is vital for future treatments of HHT.We have demonstrated that endoglin interacts with endothelial nitric oxide synthase (NOS3 or eNOS) and regulates its activation (2). NOS3 is a Ca+2 and calmodulin-regulated enzyme that produces NO● in response to humoral and mechanical stimuli via dynamic interactions with various allosteric regulators such as heat shock protein 90 (HSP90). NOS3 is also regulated by dynamic changes in its phosphorylation status. For example, effects of the vascular endothelial growth factor (VEGF) on angiogenesis, vascular permeability and vasomotor tone are mediated in part through Akt-dependent phosphorylation of NOS3 Ser1177 and by increased NOS3-HSP90 association (6). Although phosphorylation of NOS3 Ser1177 is indicative of agonist-induced activation, it is preceded by dephosphorylation at Thr495. TGF-β1 and -β3 but not -β2 responses can sensitize NOS3 for activation by inducing dephosphorylation at Thr495, and therefore contribute to NOS3 activation and NO-dependent vasorelaxation (7). Endoglin regulates TGF-β1 and -β3 but not -β2 responses, and is required for their induction of NOS3 Thr495 dephosphorylation (7, 8).In the vascular endothelium of HHT patients and in Eng and Alk1 heterozygous mice, impaired association of NOS3 with HSP90 renders the enzyme uncoupled, causing production of superoxide (●O2) instead of NO● (2, 3, 9) and leading to endothelial damage. Interestingly, TGF-β1 and -β3 do not induce phosphorylation at NOS3 Ser1177, yet NOS3 activation in response to TGF-β1 is abolished in endoglin-deficient cells, impairing vasomotor function (3). ACVRL1 (or ALK1) also interacts with NOS3, and its reduced levels in endothelial cells similarly cause NOS3-derived oxidative stress (3, 9).In view of the crucial roles of endoglin and ACVRL1 in the development and maintenance of the normal vasculature and the definite contribution of their mutated state to HHT, we used the LUMIER high-throughput technology (10) to identify novel protein interactions and molecular networks for these predominantly endothelial receptors. We included TGFBR2 to further define TGF-β protein networks potentially important for vascular function, and attempt to distinguish the TGF-β networks from those associated with BMP9/BMP10 and mediated by ACVRL1 in a complex with BMPR2 and endoglin (11, 12).One of identified proteins interacting with all three receptors was protein phosphatase 2A (PP2A), implicated in multiple pathways. PP2A is a holoenzyme with one structural subunit (PPP2R1A or PPP2R1B) associated with one catalytic subunit (PPP2CA or PPP2CB) and one of 19 regulatory B subunits, the latter conferring specificity to the enzyme by recruiting interacting proteins (13, 14). Of interest, PP2A interacts with NOS3 to regulate Ser1177 phosphorylation and NO● production (15). However, the mechanisms governing recruitment of PP2A to NOS3 and the contribution of TGF-β/BMP receptor complexes are unknown. Recently, the human PPP2R2B gene coding for PPP2R2B protein (also known as PP2A-Bβ regulatory subunit) was mapped to chromosome 5q31-q32, in an interval in linkage disequilibrium with the HHT3 locus (16, 17). We now report that PPP2R2B interacts with the ACVRL1/TGFBR2/endoglin complex and that endoglin governs NOS3 phosphorylation and activation status by hindering PP2A access to NOS3 via the PPP2R2B subunit. Loss of endoglin leads to constitutive reduction in NOS3 phosphorylation and likely to changes in several networks with consequent endothelial dysfunction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号